精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

已知圆和直线,直线都经过圆C外定点A(1,0).

(Ⅰ)若直线与圆C相切,求直线的方程;

(Ⅱ)若直线与圆C相交于P,Q两点,与交于N点,且线段PQ的中点为M,

求证:为定值.

 

【答案】

(Ⅰ)(Ⅱ)设直线方程为,由 得 得

为定值

【解析】

试题分析:(Ⅰ)①若直线的斜率不存在,即直线是,符合题意.    1分

②若直线斜率存在,设直线,即

由题意知,圆心(3,4)到已知直线的距离等于半径2,

即: ,解之得 .     5分

所求直线方程是.     6分

(Ⅱ)解法一:直线与圆相交,斜率必定存在,且不为0,

可设直线方程为

 得.     8分

再由 

∴    得.      12分

∴  

为定值.    14分

解法二:直线与圆相交,斜率必定存在,且不为0,可设直线方程为

 得.     8分

又直线CM与垂直,

 得.    10分

 

,为定值.     14分

解法三:用几何法,如图所示,△AMC∽△ABN,则

可得,是定值.

考点:直线与圆的位置关系

点评:当直线与圆相切时常用圆心到直线的距离等于圆的半径,当直线与圆相交时常用圆心到直线的距离,弦长一半,圆的半径构成的直角三角形三边勾股定理关系;第一问在求直线方程时需注意分直线斜率存在与不存在两种情况讨论,过直线外一点做圆的切线有2条,不要丢解

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案