精英家教网 > 高中数学 > 题目详情
1.已知关于x的方程2x2-($\sqrt{3}$+1)x+m=0的两个根分别为sinθ和cosθ,θ∈(0,$\frac{π}{2}$).
(1)求实数m的值;
(2)求$\frac{sinθ}{1-cotθ}$+$\frac{cosθ}{1-tanθ}$的值.

分析 (1)利用根与系数之间的关系得到sinθ+cosθ,sinθcosθ,然后利用三角公式进行化简即可.
(2)利用(1)及同角三角函数基本关系式即可化简得解.

解答 解:(1)因为方程2x2-($\sqrt{3}$+1)x+m=0的两根为sinθ和cosθ,θ∈(0,$\frac{π}{2}$),
所以sinθ+cosθ=$\frac{\sqrt{3}+1}{2}$,sinθcosθ=$\frac{m}{2}$,
因为(sinθ+cosθ)2=1+2sinθcosθ,
所以($\frac{\sqrt{3}+1}{2}$)2=1+2×$\frac{m}{2}$=1+m,
即1+$\frac{\sqrt{3}}{2}$=1+m,
所以m=$\frac{\sqrt{3}}{2}$.
(2)$\frac{sinθ}{1-cotθ}$+$\frac{cosθ}{1-tanθ}$=$\frac{sinθ}{1-\frac{cosθ}{sinθ}}$+$\frac{cosθ}{1-\frac{sinθ}{cosθ}}$=$\frac{si{n}^{2}θ}{sinθ-cosθ}$-$\frac{co{s}^{2}θ}{sinθ-cosθ}$
=$\frac{(sinθ-cosθ)(sinθ+cosθ)}{sinθ-cosθ}$=sinθ+cosθ=$\frac{{\sqrt{3}+1}}{2}$.

点评 本题主要考查二次函数根与系数之间的关系,以及三角函数的公式的应用,综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图所示,在棱长为2的正方体AC1中,点P,Q分别在棱BC、CD上,满足B1Q⊥D1P,且PQ=$\sqrt{2}$.
(1)试确定P、Q两点的位置.
(2)求B1Q与平面APQ所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知正六边形ABCDEF中,G、H、I、J、K、L分别为AB、BC、CD、DE、EF、FA的中点,圆O为六边形GHIJKL的内切圆,则在正六边形ABCDEF中投掷一点,该点不落在圆O内的概率为(  )
A.1-$\frac{\sqrt{3}π}{6}$B.1-$\frac{\sqrt{3}π}{8}$C.1-$\frac{\sqrt{3}π}{9}$D.1-$\frac{\sqrt{3}π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ln(x+1)-ax在(0,f(0))处的切线与函数y=$\frac{1}{2}{x^2}$相切.
(1)求f(x)的单调区间;
(2)若(k+1)(x-1)<xf(x-1)+x2(k∈Z)对任意x>1恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=2x-1+a,g(x)=bf(1-x),其中a,b∈R.若满足不等式f(x)≥g(x)的解的最小值为2,则实数a的取值范围是(  )
A.a<0B.a>-$\frac{1}{4}$C.a≤-2D.a>-$\frac{1}{4}$或a≤-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx-ax2+x,其中a为常数,e为自然对数的底数
(1)当a=1时,求函数f(x)的最值;
(2)若函数g(x)=$\frac{f(x)}{x}$在区间(1,e)内有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x(x-c)2在x=2处有极值且c<3,c∈R.
(1)求c的值;
(2)求f(x)在区间[0,4]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a>0,用综合法或分析法证明:$\sqrt{{a}^{2}+\frac{1}{{a}^{2}}}$-$\sqrt{2}$≥a+$\frac{1}{a}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设x≠y,且两数列x,a1,a2,a3,y和b1,x,b2,b3,y,b4均为等差数列,则$\frac{{b}_{4}-{b}_{3}}{{a}_{2}-{a}_{1}}$=$\frac{8}{3}$.

查看答案和解析>>

同步练习册答案