【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,AB∥CD,∠BAD=90°,AD= ,DC=2AB=2,E为BC中点.
(1)求证:平面PBC⊥平面PDE
(2)线段PC上是否存在一点F,使PA∥平面BDF?若存在,求 的值;若不存在,说明理由.
【答案】
(1)证明:连接BD
在RT△DAB中,BD= =
知△DBC是等腰三角形.
又∵E为BC的中点.
∴DE⊥BC
∵PD⊥平面ABCD,且BC平面ABCD
∴PD⊥BC
∵PD∩DE=D
∴BC⊥平面PDE
又∵BC平面PBC
∴平面PBC⊥平面PDE
(2)解:线段PC上存在一点F,且 时,有PA∥平面BDF
证明如下:
连接AC交BD于点O,在平面PAC中过点O作OF∥PA,则交PC于F
又∵OF平面BDF,PA平面BDF
∴PA∥平面BDF
∵四边形ABCD中AB∥CD,
∴易知△ABO∽△CDO
又∵CD=2AB=2,
∴
∵OF∥PA
∴
∴当 时,PA∥平面BDF
【解析】(1)要证平面PBC⊥平面PDE,只要证平面PBC内的直线BC⊥平面PDE即可.(2)由线面平行的性质定理,若使PA∥平面BDF,则过直线PA的平面和平面BDF的交线会和PA平行,故作辅助线OF∥AP,再利用线面平行判定定理证明.确定F的位置,则利用三角形相似的相似比确定 的值.
【考点精析】本题主要考查了直线与平面平行的判定和平面与平面垂直的判定的相关知识点,需要掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行;一个平面过另一个平面的垂线,则这两个平面垂直才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知方程C:x2+y2﹣2x﹣4y+m=0,
(1)若方程C表示圆,求实数m的范围;
(2)在方程表示圆时,该圆与直线l:x+2y﹣4=0相交于M、N两点,且|MN|= ,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,椭圆C过点A ,两个焦点为(﹣1,0),(1,0).
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC的内角A,B,C 的对边分别是a,b,c,已知 b+acos C=0,sin A=2sin(A+C).
(1)求角C的大小;
(2)求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】ABCD为空间四边形,AB=CD,AD=BC,AB≠AD,M,N分别是对角线AC与BD的中点,则MN与( )
A.AC,BD之一垂直
B.AC,BD都垂直
C.AC,BD都不垂直
D.AC,BD不一定垂直
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高一(1)班参加校生物竞赛学生成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,据此解答如下问题:
(1)求高一(1)班参加校生物竞赛人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(2)若要从分数在[80,100]之间的学生中任选两人进行某项研究,求至少有一人分数在[90,100]之间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个推导过程:
①∵a,b∈R+,∴( )+( )≥2 =2;
②∵x,y∈R+,∴lgx+lgy≥2 ;
③∵a∈R,a≠0,∴( )+a≥2 =4;
④∵x,y∈R,xy<0,∴( )+( )=﹣[(﹣( ))+(﹣( ))]≤﹣2 =﹣2.
其中正确的是( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b,c分别是△ABC的三个内角A,B,C所对的边,且满足(2b﹣a)cosC=ccosA. (Ⅰ)求角C的大小;
(Ⅱ)设y=﹣4 sin2 +2sin(C﹣B),求y的最大值并判断当y取得最大值时△ABC的形状.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com