精英家教网 > 高中数学 > 题目详情

【题目】某电力部门需在A、B两地之间架设高压电线,因地理条件限制,不能直接测量A、B两地距离.现测量人员在相距 km的C、D两地(假设A、B、C、D在同一平面上)测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(如图),假如考虑到电线的自然下垂和施工损耗等原因,实际所须电线长度为A、B距离的 倍,问施工单位应该准备多长的电线?

【答案】解:在△ACD中,∵∠ADC=30°,∠ACD=75°+45°=120°,

∴∠CAD=30°,∴AC=CD=

在△BCD中,∵∠BDC=30°+45°=75°,∠BCD=45°,∴∠CBD=60°,

由正弦定理得:

∴BC= = =

在△ABC中,由余弦定理得:AB2=AC2+BC2﹣2ACBCcos∠ACB

=3+( 2﹣2 =5,

∴AB=

故施工单位应该准备电线长为 =5km.


【解析】在△ACD中求出AC,在△BCD中求出BC,在△ABC中利用余弦定理求出AB.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆两焦点 ,并且经过点
(1)求椭圆的方程;
(2)若过点A(0,2)的直线l与椭圆交于不同的两点M、N(M在A、N之间),试求△OAM与△OAN面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ 是奇函数.
(1)若点Q(1,3)在函数f(x)的图象上,求函数f(x)的解析式;
(2)写出函数f(x)的单调区间(不要解答过程,只写结果);
(3)设点A(t,0),B(t+1,0)(t∈R),点P在f(x)的图象上,且△ABP的面积为2,若这样的点P恰好有4个,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥O﹣ABCD中,∠BAD=120°,OA⊥平面ABCD,E为OD的中点,OA=AC= AD=2,AC平分∠BAD.

(1)求证:CE∥平面OAB;
(2)求四面体OACE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某电视台综艺节目举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为(

A.84,4.84
B.84,1.6
C.85,4
D.85,1.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如表是某校120名学生假期阅读时间(单位:小时)的频率分布表,现用分层抽样的方法从[10,15),[15,20),[20,25),[25,30)四组中抽取20名学生了解其阅读内容,那么从这四组中依次抽取的人数是(

分组

频数

频率

[10,15)

12

0,10

[15,20)

30

a

[20,25)

m

0.40

[25,30)

n

0.25

合计

120

1.00


A.2,5,8,5
B.2,5,9,4
C.4,10,4,2
D.4,10,3,3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在无穷数列{an}中,a1=p是正整数,且满足 (Ⅰ)当a3=9时,给出p的值;(结论不要求证明)
(Ⅱ)设p=7,数列{an}的前n项和为Sn , 求S150
(Ⅲ)如果存在m∈N* , 使得am=1,求出符合条件的p的所有值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知n次多项式 ,在求fn(x0)值的时候,不同的算法需要进行的运算次数是不同的.例如计算 (k=2,3,4,…,n)的值需要k﹣1次乘法运算,按这种算法进行计算f3(x0)的值共需要9次运算(6次乘法运算,3次加法运算).现按如图所示的框图进行运算,计算fn(x0)的值共需要次运算.(
A.2n
B.2n
C.
D.n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若f(x)是定义在R上的偶函数,求实数a的值;
(2)在(1)的条件下,若g(x)=f(x)﹣2,求函数g(x)的零点.

查看答案和解析>>

同步练习册答案