精英家教网 > 高中数学 > 题目详情
若函数f(x)=
1
3
x3-a2x
满足:对于任意的x1,x2∈[0,1]都有|f(x1)-f(x2)|≤1恒成立,则a的取值范围是______.
由题意f′(x)=x2-a2
当|a|≥1时,在x∈[0,1],恒有导数为负,即函数在[0,1]上是减函数,
故最大值为f(0)=0,最小值为f(1)=
1
3
-a2
故有a2-
1
3
≤1
,解得|a|≤
2
3
3
,解可得-
2
3
3
≤a≤
2
3
3

又|a|≥1,则-
2
3
3
≤a≤-1或1≤a≤
2
3
3

当|a|∈[0,1),由导数知函数在[0,a]上减,在[a,1]上增;
故最小值为f(a)=-
2
3
a3
<0,
又f(0)=0,f(1)=
1
3
-a2
若f(0)=0是最大值,此时符合;若f(1)=
1
3
-a2是最大值,此时也符合,
故对任意的|a|∈[0,1)都有对于任意的x1,x2∈[0,1]都有|f(x1)-f(x2)|≤1恒成立
综上得a的取值范围是-
2
3
3
≤ a≤
2
3
3

故答案为:-
2
3
3
≤ a≤
2
3
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=x+
13-2tx
(t∈N*)的最大值是正整数M,则M=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
1
x
,x>1
(3a-1)x+4a,x≤1
为R上的减函数,则实数a的取值范围为
[
2
7
1
3
)
[
2
7
1
3
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3+2x-x2
的定义域是A.
(1)求集合A;
(2)若集合B={x|a-1<x<a+1}且B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
x2-1
x2+1
,则(1)
f(2)
f(
1
2
)
=
-1
-1

(2)f(3)+f(4)+…+f(2012)+f(
1
3
)+f(
1
4
)+…+f(
1
2012
)
=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(
1
3
)
x
-8(x≤0)
x
     (x>0)
,若f(a)>1,则实数a的取值范围为
a>1或a<-2
a>1或a<-2

查看答案和解析>>

同步练习册答案