精英家教网 > 高中数学 > 题目详情
18.已知f(x)=2cos(2x+φ),满足f(x+φ)=f(x+4φ),则f(x)在[${\frac{π}{2}$,π]上的单调递增区间为(  )
A.[${\frac{π}{2}$,$\frac{2π}{3}}$]B.[${\frac{π}{2}$,$\frac{5π}{6}}$]C.[${\frac{2π}{3}$,$\frac{5π}{6}}$]D.[${\frac{5π}{6}$,π]

分析 根据余弦函数的周期性求出φ的值,再利用余弦函数的单调性即可求出f(x)在[${\frac{π}{2}$,π]上的单调递增区间.

解答 解:由f(x+φ)=f(x+4φ),
得周期T=3φ=π,解得φ=$\frac{π}{3}$,
所以$f(x)=2cos({2x+\frac{π}{3}})$;
又当x∈[${\frac{π}{2}$,π]时,2x∈[π,2π],
所以2x+$\frac{π}{3}$∈[$\frac{4π}{3}$,$\frac{7π}{3}$];
又余弦函数在[π,2π]上的单调递增,
所以$2x+\frac{π}{3}∈[{\frac{4π}{3},2π}]$,
解得$x∈[{\frac{π}{2},\frac{5π}{6}}]$,
所以f(x)在[${\frac{π}{2}$,π]上的单调递增区间为[$\frac{π}{2}$,$\frac{5π}{6}$].
故选:B.

点评 本题考查了余弦函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图所示,平面ABEF⊥平面ABCD,且四边形ABEF为菱形,ABCD为直角梯形,∠BAD=∠CDA=90°,∠ABE=60°,AB=2AD=2CD=2,H是EF的中点
(1)求证:平面AHC⊥平面BCE
(2)求四棱锥C-ABEH的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.复数z=$\frac{2+i}{1-2i}$,则|z|=(  )
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知Sn、Tn分别为数列{an}、{bn}的前n项和,a1=0,a2=2,2Sn+1=$\sqrt{{S_n}+{S_{n+1}}}$•$\sqrt{{S_{n+1}}+{S_{n+2}}}$,若Tn=$\frac{{{S_n}+{S_{n+1}}}}{2}$,则bn=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2+bx-alnx.
(1)当函数f(x)在点(1,f(1))处的切线方程为y+5x-5=0,求函数f(x)的解析式;
(2)当a=1时,函数f(x)=x2+bx-alnx在(1,2)上单调递减,试求b的取值范围;
(3)在(1)的条件下,若x0是函数f(x)的零点,且x0∈(n,n+1),n∈N*,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,则输出的结果是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知全集A={1,3,5,7},B={x|x<3},则A∩B=(  )
A.{1}B.{3}C.{1,3}D.{5,7}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设f(x)=x3+mlog2(x+$\sqrt{{x^2}+1}$)(m∈R,m>0),则不等式f(m)+f(m2-2)≥0的解是m≥1.(注:填写m的取值范围)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l:2x+y-3=0与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两支分别相交于P,Q两点,O为坐标原点,若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,则$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$=$\frac{5}{9}$.

查看答案和解析>>

同步练习册答案