分析 (1)求出函数的导数,得到关于a,b的方程,求出a,b的值,从而求出函数的解析式;
(2)将a=1代入f(x),求出函数的导数,结合二次函数的性质求出b的范围即可;
(3)求出函数的导数,得到函数的单调区间,求出对应的函数值,从而求出n的值即可.
解答 解:(1)$f'(x)=2x+b-\frac{a}{x}$,所以$\left\{{\begin{array}{l}{f'(1)=2+b-a=-5}\\{f(1)=1+b=0}\end{array}}\right.⇒\left\{{\begin{array}{l}{b=-1}\\{a=6}\end{array}}\right.$,
∴函数f(x)的解析式为f(x)=x2-x-6lnx(x>0);…(3分)
(2)当a=1时,$f(x)={x^2}+bx-lnx,f'(x)=2x+b-\frac{1}{x}=\frac{{2{x^2}+bx-1}}{x}$,
只考虑分子即可,设F(x)=2x2+bx-1,
可知$\left\{{\begin{array}{l}{F(1)=2+b-1≤0}\\{F(2)=2×{2^2}+2b-1≤0}\end{array}⇒b≤-\frac{7}{2}}\right.$,
故b的取值范围为$({-∞,-\frac{7}{2}}]$…(6分)
(3)$f(x)={x^2}-x-6lnx⇒f'(x)=2x-1-\frac{6}{x}=\frac{{2{x^2}-x-6}}{x}$,
因为函数f(x)的定义域为x>0,
$f'(x)=\frac{{({2x+3})({x-2})}}{x}=0⇒x=-\frac{3}{2}或x=2$,
当x∈(0,2)时,f'(x)<0,f(x)单调递减,
当x∈(2,+∞)时,f'(x)>0,函数f(x)单调递增,
且函数f(x)至少有两个零点,
其中f(1)=0,不符合要求,
f(3)=6(1-ln3)<0,$f(4)=6({2-ln4})=6ln\frac{e^2}{4}>0$,
∴x0∈(3,4),故n=3…(12分)
点评 本题考查了曲线的切线方程问题,考查函数的单调性问题,考查导数的应用以及函数的零点问题,是一道综合题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A⊆B | B. | B⊆A | C. | A∪B=R | D. | A∩B=∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [${\frac{π}{2}$,$\frac{2π}{3}}$] | B. | [${\frac{π}{2}$,$\frac{5π}{6}}$] | C. | [${\frac{2π}{3}$,$\frac{5π}{6}}$] | D. | [${\frac{5π}{6}$,π] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,$\frac{3}{2}$) | B. | (1,$\frac{3}{2}$] | C. | [1,$\frac{3}{2}$) | D. | [1,$\frac{3}{2}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com