3£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{\frac{3-4x}{2x-1}£¬x¡Ê[0£¬\frac{1}{4}]}\\{\frac{1}{2}lo{g}_{2}x-3£¬x¡Ê£¨\frac{1}{4}£¬1]}\end{array}\right.$£¬g£¨x£©=x3-3ax2-2a£¨a¡Ý1£©£¬Èô¶ÔÓÚÈÎÒâx1¡Ê[0£¬1]×Ü´æÔÚx2¡Ê[0£¬1]£¬Ê¹µÃg£¨x2£©=f£¨x1£©³ÉÁ¢£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨1£¬$\frac{3}{2}$£©B£®£¨1£¬$\frac{3}{2}$]C£®[1£¬$\frac{3}{2}$£©D£®[1£¬$\frac{3}{2}$]

·ÖÎö ¸ù¾Ý·Öʽº¯ÊýºÍ¶ÔÊýº¯ÊýµÄµ¥µ÷ÐÔµÄÐÔÖÊÇó³öº¯Êýf£¨x£©µÄȡֵ·¶Î§£¬Çóº¯Êýg£¨x£©µÄµ¼Êýg¡ä£¨x£©£¬ÅжϺ¯Êýg£¨x£©ÔÚ[0£¬1]Éϵĵ¥µ÷ÐÔ£¬¸ù¾ÝÌõ¼þ¶ÔÓÚÈÎÒâx1¡Ê[0£¬1]×Ü´æÔÚx2¡Ê[0£¬1]£¬Ê¹µÃg£¨x2£©=f£¨x1£©³ÉÁ¢£¬½øÐÐת»¯Çó½â¼´¿É£®

½â´ð ½â£ºµ±0¡Üx¡Ü$\frac{1}{4}$ʱ£¬f£¨x£©=$\frac{3-4x}{2x-1}$=$\frac{-4x+2+1}{2x-1}$=-2+$\frac{1}{2x-1}$¡Ê[-4£¬-3]£¬
µ±$\frac{1}{4}$£¼x¡Ü1ʱ£¬f£¨x£©=$\frac{1}{2}$log2x-3¡Ê£¨-4£¬-3]£¬
×ÛÉϵ±x¡Ê[0£¬1]ʱf£¨x£©¡Ê[-4£¬-3]£¬
g£¨x£©µÄµ¼Êýg¡ä£¨x£©=3x2-6ax=3x£¨x-2a£©£¬
ÓÉg¡ä£¨x£©=0µÃx=0»òx=2a£¬
¡ßa¡Ý1£¬¡à2a¡Ý2£¬
Ôòµ±0¡Üx¡Ü1ʱ£¬]£¬g¡ä£¨x£©¡Ü0£»
¹Êg£¨x£©=x3-3a2x-2aÔÚ[0£¬1]ÉÏÊǼõº¯Êý£¬
Ôòg£¨0£©=-2a£¬g£¨1£©=1-3a2-2a£¬
¼´-3a2-2a+1¡Üg£¨x£©¡Ü-2a
ÓÖ¡ßf£¨x£©µÄÖµÓòΪ[-4£¬-3]£»
Èô¶ÔÓÚÈÎÒâx1¡Ê[0£¬1]×Ü´æÔÚx2¡Ê[0£¬1]£¬Ê¹µÃg£¨x2£©=f£¨x1£©³ÉÁ¢£¬
¡àg£¨1£©¡Ü-4ÇÒg£¨0£©¡Ý-3£»
¼´$\left\{\begin{array}{l}{-3{a}^{2}-2a+1¡Ü-4}\\{-2a¡Ý-3}\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{3{a}^{2}+2a-5¡Ý0}\\{a¡Ü\frac{3}{2}}\end{array}\right.$£¬
µÃ$\left\{\begin{array}{l}{a¡Ý1»òa¡Ü-\frac{5}{3}}\\{a¡Ü\frac{3}{2}}\end{array}\right.$£¬µÃ1¡Üa¡Ü$\frac{3}{2}$£¬
¼´ÊµÊýaµÄȡֵ·¶Î§ÊÇ[1£¬$\frac{3}{2}$]£¬
¹ÊÑ¡£ºD

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éº¯Êýºã³ÉÁ¢ÎÊÌâÒÔ¼°º¯ÊýÖµÓòµÄÇ󷨣¬¸ù¾Ý·Ö¶Îº¯ÊýµÄ±í´ïʽÇó³öº¯ÊýµÄÖµÓòÒÔ¼°ÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔºÍ×îÖµÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®¿¼²éѧÉúµÄת»¯ÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=x2+bx-alnx£®
£¨1£©µ±º¯Êýf£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³ÌΪy+5x-5=0£¬Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©µ±a=1ʱ£¬º¯Êýf£¨x£©=x2+bx-alnxÔÚ£¨1£¬2£©Éϵ¥µ÷µÝ¼õ£¬ÊÔÇóbµÄȡֵ·¶Î§£»
£¨3£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Èôx0ÊǺ¯Êýf£¨x£©µÄÁãµã£¬ÇÒx0¡Ê£¨n£¬n+1£©£¬n¡ÊN*£¬ÇónµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Îªµ÷²éijµØÈËȺÄêÁäÓë¸ßѪѹµÄ¹ØÏµ£¬Óüòµ¥Ëæ»ú³éÑù·½·¨´Ó¸ÃµØÇøÄêÁäÔÚ20¡«60ËêµÄÈËȺÖгéÈ¡200È˲âÁ¿ÑªÑ¹£¬½á¹ûÈçÏ£º
¸ßѪѹ·Ç¸ßѪѹ×ܼÆ
ÄêÁä20µ½39Ëê12c100
ÄêÁä40µ½60Ëêb52100
×ܼÆ60a200
£¨1£©¼ÆËã±íÖеÄa¡¢c¡¢bÖµ£»ÊÇ·ñÓÐ99%µÄ°ÑÎÕÈÏΪ¸ßѪѹÓëÄêÁäÓйأ¿²¢ËµÃ÷ÀíÓÉ£®
£¨2£©ÏÖ´ÓÕâ60Ãû¸ßѪѹ»¼ÕßÖа´ÄêÁä²ÉÓ÷ֲã³éÑùµÄ·½·¨³éÈ¡5ÈË£¬ÔÙ´ÓÕâ5ÈËÖÐËæ»ú³éÈ¡2ÈË£¬ÇóÇ¡ºÃÒ»Ãû»¼ÕßÄêÁäÔÚ20µ½39ËêµÄ¸ÅÂÊ£®
¸½²Î¿¼¹«Ê½¼°²Î¿¼Êý¾Ý£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$
P£¨k2¡Ýk0£©0.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÔÚÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬AA1=AC=1£¬BC=$\sqrt{2}$£¬AB=$\sqrt{3}$£¬MÊÇÀâB1C1µÄÖе㣬NÊǶԽÇÏßAB1µÄÖе㣮
£¨1£©ÇóÖ¤£ºCN¡ÍÆ½ÃæBNM£»
£¨2£©Çó¶þÃæ½ÇC-BN-B1µÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ABÊÇ¡ÑOµÄÖ±¾¶£¬BCÊÇ¡ÑOµÄÇÐÏߣ¬BΪÇе㣬OCƽÐÐÓÚÏÒAD£¬Á¬½ÓCD£®
£¨1£©ÇóÖ¤£ºCDÊÇ¡ÑOµÄÇÐÏߣ»
£¨2£©¹ýµãD×÷DE¡ÍABÓÚµãE£¬½»ACÓÚµãP£¬ÇóÖ¤£ºµãPƽ·ÖÏß¶ÎDE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªÖ±Ïßl£º2x+y-3=0ÓëË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÁ½Ö§·Ö±ðÏཻÓÚP£¬QÁ½µã£¬OÎª×ø±êÔ­µã£¬Èô$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0£¬Ôò$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$=$\frac{5}{9}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªsin£¨$\frac{¦Ð}{2}$+¦Á£©=$\frac{1}{4}$£¬Ôòcos2¦Á=£¨¡¡¡¡£©
A£®$-\frac{7}{8}$B£®$\frac{7}{8}$C£®$\frac{7}{8}$»ò$-\frac{7}{8}$D£®$\frac{{\sqrt{15}}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Æ½ÃæÄÚÓÐÏòÁ¿$\overrightarrow{OA}$=£¨1£¬2£©£¬$\overrightarrow{OB}$=£¨-4£¬-5£©£¬$\overrightarrow{OP}$=£¨cos¦Á£¬sin¦Á£©£¬µ±¦ÁΪºÎֵʱ£¬f£¨¦Á£©=$\overrightarrow{PA}$•$\overrightarrow{PB}$ÄÜÈ¡µÃ×î´óÖµ£¬×î´óÖµÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬µãAµÄ×ø±êΪ£¨2£¬3£©£¬µãBµÄ×ø±êΪ£¨-1£¬-1£©£¬½«Ö±½Ç×ø±êÆ½ÃæÑØxÖáÕÛ³ÉÖ±¶þÃæ½Ç£¬ÔòA£¬BÁ½µã¼äµÄ¾àÀëΪ$\sqrt{19}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸