精英家教网 > 高中数学 > 题目详情
17.在平面直角坐标系中,点A的坐标为(2,3),点B的坐标为(-1,-1),将直角坐标平面沿x轴折成直二面角,则A,B两点间的距离为$\sqrt{19}$.

分析 转化平面坐标为空间坐标,利用空间距离公式求解即可.

解答 解:在平面直角坐标系中,点A的坐标为(2,3),点B的坐标为(-1,-1),将直角坐标平面沿x轴折成直二面角,则A的空间坐标(2,0,3),B的空间坐标(-1,-1,0),
则A,B两点间的距离为:$\sqrt{(2+1)^{2}+({0+1)}^{2}+(3-0)^{2}}$=$\sqrt{19}$.
故答案为:$\sqrt{19}$.

点评 本题考查空间距离公式的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{\frac{3-4x}{2x-1},x∈[0,\frac{1}{4}]}\\{\frac{1}{2}lo{g}_{2}x-3,x∈(\frac{1}{4},1]}\end{array}\right.$,g(x)=x3-3ax2-2a(a≥1),若对于任意x1∈[0,1]总存在x2∈[0,1],使得g(x2)=f(x1)成立,则a的取值范围是(  )
A.(1,$\frac{3}{2}$)B.(1,$\frac{3}{2}$]C.[1,$\frac{3}{2}$)D.[1,$\frac{3}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.f(x),g(x)是定义在[a,b]上的连续函数,则“f(x)的最大值小于g(x)的最小值”是“f(x)<g(x)对一切x∈[a,b]成立”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.非充分非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在极坐标系中,求圆ρ=8sinθ上的点到直线θ=$\frac{π}{3}$(ρ∈R)距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知a<-2,则函数f(x)=(2-a)lnx+$\frac{1}{x}$+2ax的单调递增区间为(0,-$\frac{1}{a}$),($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,AB为圆O的直径,BC,CD为圆O的切线,B,D为切点.
(Ⅰ)求证:AD∥OC;
(Ⅱ)若AD•OC=8,求圆O的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.定义在R上的可导函数f(x)满足(x-314)f(2x)-2xf′(2x)>0恒成立,求证:?x∈R,f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在Rt△ABC中,A=90°,AB=AC=2$\sqrt{2}$,D、E分别为AC、AB的中点,将△ABC沿着DE折叠,使平面ADE⊥平面CDEB.
(I)若F为AC的中点,求证:DF∥平面ABE;
(Ⅱ)设θ为平面ABE与平面ACD两个平面相交所成的锐角,求θ的正弦值;
(Ⅲ)点H是线段BC上一个动点(点H不与B、C重合),是否存在点H运动到某一位置,使得DH⊥AE成立,如果成立,确定H的位置,如果不成立,说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{47}{6}$B.$\frac{15}{2}$C.$\frac{23}{3}$D.6

查看答案和解析>>

同步练习册答案