精英家教网 > 高中数学 > 题目详情
18.如图,AB是⊙O的直径,BC是⊙O的切线,B为切点,OC平行于弦AD,连接CD.
(1)求证:CD是⊙O的切线;
(2)过点D作DE⊥AB于点E,交AC于点P,求证:点P平分线段DE.

分析 (1)连接OD,由半径OD=OA,可得∠OAD=∠ODA;利用平行线的性质OC∥AD,可得∠OAD=∠BOC,进而得到∠DOC=∠ODA.利用三角形全等的判定定理即可得到△DOC≌△BOC.可得∠ODC=∠OBC.利用圆的切线的判定定理即可证明;
(2)从平行线得到线段的比,从而证得.

解答 (1)证明:连接OD,
∵OC∥AD,∴∠1=∠ADO,∠2=∠DAO.
∵OA=OD,∴∠ADO=∠DAO,∴∠1=∠2,
∵OC=OC,OB=OD,∴△DOC≌△BOC,∴∠ODC=∠OBC.
∵OB是⊙O的半径,BC是⊙O的切线,
∴BC⊥OB,∴∠OBC=90°,∴∠ODC=90°,
∴CD⊥OD.
又OD是⊙O的半径,∴CD是⊙O的切线.
(2)解:过点A作⊙O的切线AF,交CD的延长线于点F,则FA⊥AB.
∵DE⊥AB,由(1)知CB⊥AB,∴FA∥DE∥CB,∴$\frac{FD}{FC}=\frac{AE}{AB}$.
在△FAC中,∵DP∥FA,∴$\frac{DP}{FA}=\frac{DC}{FC}$.
∵FA,FD是⊙O的切线,∴FA=FD,∴$\frac{DP}{FD}=\frac{DC}{FC}$,∴$\frac{DP}{DC}=\frac{FD}{FC}=\frac{AE}{AB}$.
在△ABC中,∵EP∥BC,∴$\frac{EP}{CB}=\frac{AE}{AB}$.
∵CD,CB是⊙O的切线,∴CB=CD,∴$\frac{EP}{CD}=\frac{AE}{AB}$,∴$\frac{DP}{DC}=\frac{EP}{CD}$,∴DP=EP.
∴点P平分线段DE.

点评 熟练掌握圆的性质、平行线的性质、全等三角形的判定及其性质定理、圆的切线的性质是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知集合A={y|y=$\sqrt{{x^2}-3x+2}}$},B={x|x≤t2+2t-1,对于t∈R恒成立},则(  )
A.A⊆BB.B⊆AC.A∪B=RD.A∩B=∅

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设关于某产品的明星代言费x(百万元)和其销售额y(百万元),有如表的统计表格:
i12345合计
xi(百万元)1.261.441.591.711.827.82
wi(百万元)2.002.994.025.006.0320.04
yi(百万元)3.204.806.507.508.0030.00
$\overline{x}$=1.56,$\overline{w}$=4.01,$\overline{y}$=6,$\sum_{i=1}^{5}$xiyi=48.66,$\sum_{i=1}^{5}$wiyi=132.62,$\sum_{i=1}^{5}$(xi-$\overline{x}$)2=0.20,$\sum_{i=1}^{5}$(wi-$\overline{w}$)2=10.14
其中${ω_i}=x_i^3(i=1,2,3,4,5)$.
(1)在坐标系中,作出销售额y关于广告费x的回归方程的散点图,根据散点图指出:y=a+blnx,y=c+dx3哪一个适合作销售额y关于明星代言费x的回归类方程(不需要说明理由);
(2)已知这种产品的纯收益z(百万元)与x,y有如下关系:x=0.2y-0.726x(x∈[1.00,2.00]),试写出z=f(x)的函数关系式,试估计当x取何值时,纯收益z取最大值?(以上计算过程中的数据统一保留到小数点第2位)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,椭圆长轴端点为A,B,O为椭圆中心,F为椭圆的右焦点,且$\overrightarrow{AF}•\overrightarrow{FB}$=1,|OF|=1.
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为M,直线l交椭圆于P,Q两点,是否存在直线l,使点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知x,y∈R,i是虚数单位,若2+xi与$\frac{3+yi}{1+i}$互为共轭复数,则(x+yi)2=(  )
A.3iB.3+2iC.-2iD.2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{\frac{3-4x}{2x-1},x∈[0,\frac{1}{4}]}\\{\frac{1}{2}lo{g}_{2}x-3,x∈(\frac{1}{4},1]}\end{array}\right.$,g(x)=x3-3ax2-2a(a≥1),若对于任意x1∈[0,1]总存在x2∈[0,1],使得g(x2)=f(x1)成立,则a的取值范围是(  )
A.(1,$\frac{3}{2}$)B.(1,$\frac{3}{2}$]C.[1,$\frac{3}{2}$)D.[1,$\frac{3}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x3-3ax+b(a,b∈R)在x=2处的切线方程为y=9x-14.
(Ⅰ)求a,b的值;
(Ⅱ)已知函数g(x)=-ex+k2+4k,若对任意的x1∈[0,2],总存在x2∈[0,2],使得f(x1)<g(x2)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=log2(x2+2x-3)的单调递减区间是(-∞,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知a<-2,则函数f(x)=(2-a)lnx+$\frac{1}{x}$+2ax的单调递增区间为(0,-$\frac{1}{a}$),($\frac{1}{2}$,+∞).

查看答案和解析>>

同步练习册答案