精英家教网 > 高中数学 > 题目详情
9.设关于某产品的明星代言费x(百万元)和其销售额y(百万元),有如表的统计表格:
i12345合计
xi(百万元)1.261.441.591.711.827.82
wi(百万元)2.002.994.025.006.0320.04
yi(百万元)3.204.806.507.508.0030.00
$\overline{x}$=1.56,$\overline{w}$=4.01,$\overline{y}$=6,$\sum_{i=1}^{5}$xiyi=48.66,$\sum_{i=1}^{5}$wiyi=132.62,$\sum_{i=1}^{5}$(xi-$\overline{x}$)2=0.20,$\sum_{i=1}^{5}$(wi-$\overline{w}$)2=10.14
其中${ω_i}=x_i^3(i=1,2,3,4,5)$.
(1)在坐标系中,作出销售额y关于广告费x的回归方程的散点图,根据散点图指出:y=a+blnx,y=c+dx3哪一个适合作销售额y关于明星代言费x的回归类方程(不需要说明理由);
(2)已知这种产品的纯收益z(百万元)与x,y有如下关系:x=0.2y-0.726x(x∈[1.00,2.00]),试写出z=f(x)的函数关系式,试估计当x取何值时,纯收益z取最大值?(以上计算过程中的数据统一保留到小数点第2位)

分析 (1)散点图,根据散点图可知,y=c+dx3适合作销售额y关于明星代言费x的回归方程.
(2)令ω=x3,则y=c+dω是y关于ω的线性回归方程,求出y=1.15+1.21ω=1.15+1.21x3.z=f(x)=0.242x3-0.726x+0.23,其中x∈[1.00,2.00],利用导数性质求出当明星代言费x=2.00百万元时,纯收益z取最大值.

解答 解:(1)散点图如右图:
根据散点图可知,y=c+dx3适合作销售额y关于明星代言费x的回归方程.
(2)令ω=x3,则y=c+dω是y关于ω的线性回归方程,
所以$\widehat{d}$=$\frac{\sum_{i}^{5}{ω}_{i}{•y}_{i}-5\overline{ω}•\overline{y}}{\sum_{i=1}^{5}({ω}_{i}-{\overline{ω}})^{2}}$=1.21,$\widehat{c}$=$\overline{y}$-1.21ω=1.15+1.21x3
所以y=1.15+1.21ω=1.15+1.21x3
z=f(x)=0.2y-0.726x=0.2(1.15+1.21x3)-0.726x
=0.242x3-0.726x+0.23,其中x∈[1.00,2.00]
令z'=0.726x2-0.726≥0,得x≥1.00,
因为x∈[1.00,2.00],
所以估计当明星代言费x=2.00百万元时,纯收益z取最大值.
估计:当明星代言费x=2.00百万元时,纯收益z取最大值.

点评 本题考查线性回归方程的应用,是中档题,解题是要认真审题,注意导数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角C所对的边长为c,△ABC的面积为S,且tan$\frac{A}{2}$tan$\frac{B}{2}$+$\sqrt{3}$(tan$\frac{A}{2}$+tan$\frac{B}{2}}$)=1.
(I) 求△ABC的内角C的值;
(II)求证:c2≥4$\sqrt{3}$S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设 A为双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左顶点,直线x=a与双曲线的一条渐近线交于点 M,点 M关于原点的对称点为 N,若双曲线的离心率为$\frac{{\sqrt{21}}}{3}$,则∠M A N=120°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.(x2-1)2(x-1)6的展开式中含x9项的系数等于(  )
A.-6B.6C.12D.-12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.${(x-\frac{1}{2x})^6}•{x^{12}}$的展开式中含x6项的系数为(  )
A.$-\frac{1}{16}$B.$\frac{1}{32}$C.$-\frac{1}{32}$D.$\frac{1}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为调查某地人群年龄与高血压的关系,用简单随机抽样方法从该地区年龄在20~60岁的人群中抽取200人测量血压,结果如下:
高血压非高血压总计
年龄20到39岁12c100
年龄40到60岁b52100
总计60a200
(1)计算表中的a、c、b值;是否有99%的把握认为高血压与年龄有关?并说明理由.
(2)现从这60名高血压患者中按年龄采用分层抽样的方法抽取5人,再从这5人中随机抽取2人,求恰好一名患者年龄在20到39岁的概率.
附参考公式及参考数据:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(k2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=$\frac{3}{4}{e^{x+\frac{1}{2}}}$,g(x)=ax3-x2-x+b(a,b∈R,a≠0),g(x)的图象C在x=-$\frac{1}{2}$处的切线方程是y=$\frac{3}{4}x+\frac{9}{8}$.
(1)若?x1,x2∈(c,d),且x1≠x2,$\frac{{g({x_1})-g({x_2})}}{{{x_1}-{x_2}}}$<0成立,求c的最小值,d的最大值;
(2)探究函数h(x)=f(x)-($\frac{3}{4}x+\frac{9}{8}$)在(-∞,2]上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,AB是⊙O的直径,BC是⊙O的切线,B为切点,OC平行于弦AD,连接CD.
(1)求证:CD是⊙O的切线;
(2)过点D作DE⊥AB于点E,交AC于点P,求证:点P平分线段DE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知点A(2,3),B(-3,-2),若直线kx-y+1-k=0与线段AB相交,则k的取值范围是(  )
A.$[\frac{3}{4},2]$B.$(-∞,\frac{3}{4}]∪[2,+∞)$C.(-∞,1]∪[2,+∞)D.[1,2]

查看答案和解析>>

同步练习册答案