精英家教网 > 高中数学 > 题目详情
1.已知f(x)=$\frac{3}{4}{e^{x+\frac{1}{2}}}$,g(x)=ax3-x2-x+b(a,b∈R,a≠0),g(x)的图象C在x=-$\frac{1}{2}$处的切线方程是y=$\frac{3}{4}x+\frac{9}{8}$.
(1)若?x1,x2∈(c,d),且x1≠x2,$\frac{{g({x_1})-g({x_2})}}{{{x_1}-{x_2}}}$<0成立,求c的最小值,d的最大值;
(2)探究函数h(x)=f(x)-($\frac{3}{4}x+\frac{9}{8}$)在(-∞,2]上零点的个数.

分析 (1)利用g(x)的图象C在x=-$\frac{1}{2}$处的切线方程是y=$\frac{3}{4}x+\frac{9}{8}$,求出a,b;?x1,x2∈(c,d)且${x_1}≠{x_2},\frac{{g({x_1})-g({x_2})}}{{{x_1}-{x_2}}}<0$成立?g(x)在(c,d)上单调减,可得$(c,d)⊆(-\frac{1}{3},1)$,即可求c的最小值,d的最大值;
(2)确定?x∈(-∞,2],且$x≠-\frac{1}{2}$时,h(x)>0,即可探究函数h(x)=f(x)-($\frac{3}{4}x+\frac{9}{8}$)在(-∞,2]上零点的个数.

解答 解:(1)g'(x)=3ax2-2x-1,
因为g(x)=ax3-x2-x+b的图象C在$x=-\frac{1}{2}$处的切线方程是$y=\frac{3}{4}x+\frac{9}{8}$,
所以$g'(-\frac{1}{2})=\frac{3}{4}$,即$3a{(-\frac{1}{2})^2}-2×(-\frac{1}{2})-1=\frac{3}{4}$,解得a=1.
因为图象C过点$A(-\frac{1}{2},\frac{3}{4})$,
所以${(-\frac{1}{2})^3}-{(-\frac{1}{2})^2}-(-\frac{1}{2})+b=\frac{3}{4}$,解得$b=\frac{5}{8}$.
?x1,x2∈(c,d)且${x_1}≠{x_2},\frac{{g({x_1})-g({x_2})}}{{{x_1}-{x_2}}}<0$成立?g(x)在(c,d)上单调减,
令g'(x)=3x2-2x-1<0,得g(x)的减区间是$(-\frac{1}{3},1)$,所以$(c,d)⊆(-\frac{1}{3},1)$,
所以c的最小值是$-\frac{1}{3}$,d的最大值是1.
(2)?x∈(-∞,2],$h(x)=f(x)-(\frac{3}{4}x+\frac{9}{8})=\frac{3}{4}{e^{x+\frac{1}{2}}}-\frac{3}{4}x-\frac{9}{8}$,$h'(x)=\frac{3}{4}{e^{x+\frac{1}{2}}}-\frac{3}{4}$,
令$h'(x)=0,x=-\frac{1}{2}$,当$x∈(-∞,-\frac{1}{2})$时,h'(x)<0,
当$x∈(-\frac{1}{2},2)$时,h'(x)>0,
所以$h(x)≥h(-\frac{1}{2})=0$,(当且仅当x=-$\frac{1}{2}$时,取等号)
即?x∈(-∞,2],且$x≠-\frac{1}{2}$时,h(x)>0,
所以函数$h(x)=f(x)-(\frac{3}{4}x+\frac{9}{8})$在(-∞,2]上有唯一的零点$-\frac{1}{2}$.

点评 本题考查导数知识的综合运用,考查导数的几何意义,考查函数的零点,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.△ABC中,AB=3,AC=4,BC=5,M为AC的中点,则$\overrightarrow{AB}•\overrightarrow{BM}$=(  )
A.-16B.-9C.9D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的一条渐近线过点(2,3),则此双曲线的离心率为(  )
A.2B.$\frac{5}{2}$C.$\frac{{\sqrt{10}}}{2}$D.$\frac{{\sqrt{13}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设关于某产品的明星代言费x(百万元)和其销售额y(百万元),有如表的统计表格:
i12345合计
xi(百万元)1.261.441.591.711.827.82
wi(百万元)2.002.994.025.006.0320.04
yi(百万元)3.204.806.507.508.0030.00
$\overline{x}$=1.56,$\overline{w}$=4.01,$\overline{y}$=6,$\sum_{i=1}^{5}$xiyi=48.66,$\sum_{i=1}^{5}$wiyi=132.62,$\sum_{i=1}^{5}$(xi-$\overline{x}$)2=0.20,$\sum_{i=1}^{5}$(wi-$\overline{w}$)2=10.14
其中${ω_i}=x_i^3(i=1,2,3,4,5)$.
(1)在坐标系中,作出销售额y关于广告费x的回归方程的散点图,根据散点图指出:y=a+blnx,y=c+dx3哪一个适合作销售额y关于明星代言费x的回归类方程(不需要说明理由);
(2)已知这种产品的纯收益z(百万元)与x,y有如下关系:x=0.2y-0.726x(x∈[1.00,2.00]),试写出z=f(x)的函数关系式,试估计当x取何值时,纯收益z取最大值?(以上计算过程中的数据统一保留到小数点第2位)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用系统抽样法(按等距离的规则),要从160名学生中抽取一定容量的样本,将160名学生从1~160进行编号,已知抽样号码中最小的两个分别是7,15,则抽样号码的最大值是(  )
A.23B.125C.160D.159

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,椭圆长轴端点为A,B,O为椭圆中心,F为椭圆的右焦点,且$\overrightarrow{AF}•\overrightarrow{FB}$=1,|OF|=1.
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为M,直线l交椭圆于P,Q两点,是否存在直线l,使点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知x,y∈R,i是虚数单位,若2+xi与$\frac{3+yi}{1+i}$互为共轭复数,则(x+yi)2=(  )
A.3iB.3+2iC.-2iD.2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x3-3ax+b(a,b∈R)在x=2处的切线方程为y=9x-14.
(Ⅰ)求a,b的值;
(Ⅱ)已知函数g(x)=-ex+k2+4k,若对任意的x1∈[0,2],总存在x2∈[0,2],使得f(x1)<g(x2)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2+2sinθ}\end{array}\right.$,(θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为ρsin(θ+φ)=0,(其中sinφ=$\frac{1}{3}$,cosφ=$\frac{2\sqrt{2}}{3}$).
(1)求曲线C在极坐标系中的方程;
(2)求曲线C上到直线l距离最大的点的坐标.

查看答案和解析>>

同步练习册答案