分析 解法一:当n=1时,b1=T1=$\frac{2{a}_{1}+{a}_{2}}{2}$;当n≥2时,bn=Tn-Tn-1=$\frac{{a}_{n+1}+{a}_{n}}{2}$,由$2{S_{n+1}}=\sqrt{{S_n}+{S_{n+1}}}•\sqrt{{S_{n+1}}+{S_{n+2}}}$,代入值n=1,2,3,猜想即可得出.
解法二:由$2{S_{n+1}}=\sqrt{{S_n}+{S_{n+1}}}•\sqrt{{S_{n+1}}+{S_{n+2}}}$和${{T}_n}=\frac{{{S_n}+{S_{n+1}}}}{2}$得${S_{n+1}}=\sqrt{{{T}_n}}•\sqrt{{{T}_{n+1}}}$,代入${{T}_n}=\frac{{{S_n}+{S_{n+1}}}}{2}$可得:$2\sqrt{{{T}_n}}=\sqrt{{{T}_{n-1}}}+\sqrt{{{T}_{n+1}}}$,利用等差数列的通项公式即可得出.
解答 解:解法一:当n=1时,${b_1}={{T}_1}=\frac{{{S_1}+{S_2}}}{2}=\frac{{2{a_1}+{a_2}}}{2}=1$;
当n≥2时,bn=Tn-Tn-1=$\frac{{{S_n}+{S_{n+1}}}}{2}-\frac{{{S_n}+{S_{n-1}}}}{2}=\frac{{{a_{n+1}}+{a_n}}}{2}$,
由$2{S_{n+1}}=\sqrt{{S_n}+{S_{n+1}}}•\sqrt{{S_{n+1}}+{S_{n+2}}}$,代入值n=1,2,3,…,
得出S3=6,a3=4;S4=12,a4=6;S5=20,a5=8.
猜想Sn=n(n-1),an=2n-2,从而bn=2n-1.
解法二:由$2{S_{n+1}}=\sqrt{{S_n}+{S_{n+1}}}•\sqrt{{S_{n+1}}+{S_{n+2}}}$和${{T}_n}=\frac{{{S_n}+{S_{n+1}}}}{2}$得$2{S_{n+1}}=\sqrt{2{{T}_n}}•\sqrt{2{{T}_{n+1}}}$,即${S_{n+1}}=\sqrt{{{T}_n}}•\sqrt{{{T}_{n+1}}}$,
代入${{T}_n}=\frac{{{S_n}+{S_{n+1}}}}{2}$得:$2{{T}_n}=\sqrt{{{T}_{n-1}}{{T}_n}}+\sqrt{{{T}_n}{{T}_{n+1}}}$,即$2\sqrt{{{T}_n}}=\sqrt{{{T}_{n-1}}}+\sqrt{{{T}_{n+1}}}$,
由a1=0,a2=2得 T1=1,T2=4,
∴$\left\{{\sqrt{{{T}_n}}}\right\}$是以1为首项,1为公差的等差数列.
即$\sqrt{{{T}_n}}=n$,${{T}_n}={n^2}$,
∴{bn}为等差数列,易解得bn=2n-1.
点评 本题考查了递推关系、等差数列的通项公式、猜想归纳能力,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4$\sqrt{3}$π | B. | $\frac{32π}{3}$ | C. | 12π | D. | 12$\sqrt{3}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 3 | C. | 2 | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [${\frac{π}{2}$,$\frac{2π}{3}}$] | B. | [${\frac{π}{2}$,$\frac{5π}{6}}$] | C. | [${\frac{2π}{3}$,$\frac{5π}{6}}$] | D. | [${\frac{5π}{6}$,π] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com