精英家教网 > 高中数学 > 题目详情
已知双曲线与椭圆
x2
9
+
y2
25
=1
有相同的焦距,它们离心率之和为
14
5
,则此双曲线的标准方程是
 
分析:首先由椭圆方程知其焦点在y轴上,并求出半焦距c与离心率e,然后设出双曲线的标准方程,并由它们离心率之和求出双曲线的离心率
c
a
,进而求得a,再根据双曲线的性质b2=c2-a2求得b2,则问题解决.
解答:解:由椭圆方程知其焦点在y轴上,且c=
25-9
=4,e=
4
5

则设双曲线的标准方程为
y2
a2
-
x2
b2
=1

那么有
c
a
+
4
5
=
14
5
,解得a=2,
所以b2=c2-a2=16-4=12,
因此双曲线的标准方程为
y2
4
-
x2
12
= 1

故答案为
y2
4
-
x2
12
=1
点评:本题主要考查椭圆、双曲线的标准方程与性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线x2-
y23
=1

(1)求此双曲线的渐近线方程;
(2)若过点(2,3)的椭圆与此双曲线有相同的焦点,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C与椭圆x2+5y2=5有共同的焦点,且一条渐近线方程为y=
3
x

(1)求双曲线C的方程;
(2)设双曲线C的焦点分别为F1、F2,过焦点F1作实轴的垂线与双曲线C相交于A、B两点,求△ABF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C1:x2-y2=m(m>0)与椭圆C2
x2
a2
+
y2
b2
=1
有公共焦点F1F2,点N(
2
,1)
是它们的一个公共点.
(1)求C1,C2的方程;
(2)过点F2且互相垂直的直线l1,l2与圆M:x2+(y+1)2=4分别相交于点A,B和C,D,求|AB|+|CD|的最大值,并求此时直线l1的方程.

查看答案和解析>>

科目:高中数学 来源:全优设计选修数学-2-1苏教版 苏教版 题型:044

已知双曲线与椭圆x2+4y2=64共焦点,它的一条渐近线方程为x-=0,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:2010年高考数学热点题型4:解析几何(解析版) 题型:解答题

已知双曲线C1:x2-y2=m(m>0)与椭圆有公共焦点F1F2,点是它们的一个公共点.
(1)求C1,C2的方程;
(2)过点F2且互相垂直的直线l1,l2与圆M:x2+(y+1)2=4分别相交于点A,B和C,D,求|AB|+|CD|的最大值,并求此时直线l1的方程.

查看答案和解析>>

同步练习册答案