精英家教网 > 高中数学 > 题目详情
(本小题满分14分)如图,在六面体ABCDA1B1C1D1中,四边形ABCD是边长为2的正方形,四边形A1B1C1D1是边长为1的正方形,DD1⊥平面A1B1C1D1DD1⊥平面ABCDDD1=2.

(Ⅰ)求证:A1C1与AC共面,B1D1与BD共面;
(Ⅱ)求证:平面A1ACC1⊥平面B1BDD1
(Ⅲ)求二面角A-BB1-C的大小(用反三角函数值表示).
(Ⅰ)证明见解析
(Ⅱ)证明见解析
(Ⅲ)二面角的大小为
解法1(向量法):
为原点,以所在直线分别为轴,轴,轴建立空间直角坐标系如图,

则有
(Ⅰ)证明:


平行,平行,
于是共面,共面.
(Ⅱ)证明:


是平面内的两条相交直线.
平面
又平面
平面平面
(Ⅲ)解:
为平面的法向量,

于是,取,则
为平面的法向量,

于是,取,则

二面角的大小为
解法2(综合法):
(Ⅰ)证明:平面平面
,平面平面
于是
分别为的中点,连结


于是
,得
共面.
过点平面于点

,连结
于是


所以点上,故共面.
(Ⅱ)证明:平面
(正方形的对角线互相垂直),
是平面内的两条相交直线,
平面
又平面平面平面
(Ⅲ)解:直线是直线在平面上的射影,
根据三垂线定理,有
过点在平面内作,连结
平面
于是
所以,是二面角的一个平面角.
根据勾股定理,有
,有

二面角的大小为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图:直平行六面体ABCD-A1B1C1D1,底面ABCD是边长为2a的菱形,∠BAD=600,E为AB中点,二面角A1-ED-A为600
(I)求证:平面A1ED⊥平面ABB1A1
(II)求二面角A1-ED-C1的余弦值;
(III)求点C1到平面A1ED的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD= 60°。

(1)求证:平面PBD⊥平面PAC;
(2)求点A到平面PBD的距离;
(3)求二面角B—PC—A的大小。(14分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若三个平面两两相交,且三条交线互相平行,
则这三个平面把空间分成( )
A.5部分B.6部分C.7部分D.8部分

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图3,已知直二面角,直线和平面所成的角为
(I)证明
(II)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,在正三角形中,分别为各边的中点,分别为的中点,将沿 折成三棱锥后,所成的角的度数为____。 
          

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正三角形ABC的边长为,⊙O为其内切圆,DBC的中点,将三角形ACD沿AD折叠,使二面角BADC成直二面角,则⊙O上的圆弧扫过的曲面面积为____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱柱,已知是正方形且边长为为矩形,且平面⊥平面

(1)求证:平面⊥平面
(2)求点到平面的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)

四面体中,分别是的中点,且为正三角形,平面
①求与平面所成角的大小;
②求二面角的平面角的余弦值.

查看答案和解析>>

同步练习册答案