精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)的定义域为D,若函数f(x)满足条件:存在[a,b]D,使f(x)在[a,b]上的值域是[2a,2b],则称f(x)为“倍扩函数”,若函数f(x)=log2(2x+t)为“倍扩函数”,则实数t的取值范围是(
A.
B.
C.
D.

【答案】B
【解析】解:函数f(x)=log2(2x+t)为“倍扩函数”,且满足[a,b]D,使f(x)在[a,b]上的值域是[2a,2b],
∴f(x)在[a,b]上是增函数;

化简得:
∴方程f(x)=x2﹣x﹣t=0有两个不等的实根,且两根都大于0;

解得:
∴满足条件t的范围是( ,0)
故答案选:B.
【考点精析】关于本题考查的函数的值域,需要了解求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的公差为d,前n项和为Sn , 等比数列{bn}的公比为q,已知b1=a1 , b2=2,q=d,S10=100.
(1)求数列{an},{bn}的通项公式
(2)当d>1时,记cn= ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形ABCD中, R), ,且△BCD是以BC为斜边的直角三角形.求:
(1)λ的值;
(2) 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosα,sinα), =(cosβ,sinβ),| |=
(1)求cos(α﹣β)的值;
(2)若0<α< ,﹣ <β<0,且sinβ=﹣ ,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱中,侧棱 分别为棱的中点, 分别为线段的中点.

(1)求证:直线平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:
①若f(x)=ax2+(2a+b)x+2(其中x∈[﹣1,a])是偶函数,则实数b=﹣2;
②f(x)= + 既是奇函数又是偶函数;
③若f(x+2)= ,当x∈(0,2)时,f(x)=2x , 则f(2015)=2;
④已知f(x)是定义在R上的不恒为零的函数,且对任意的x,y∈R都满足f(xy)=xf(y)+yf(x),则f(x)是奇函数.其中所有正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点(a,b)是区域 内的任意一点,则使函数f(x)=ax2﹣2bx+3在区间[ ,+∞)上是增函数的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

(1)求E的方程;

2)若直线E相交于两点,且为坐标原点)的斜率之和为2,求点到直线的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log4(2x+3﹣x2).
(1)求函数f(x)的单调区间,
(2)当x∈(0, ]时,求函数f(x)的值域.

查看答案和解析>>

同步练习册答案