精英家教网 > 高中数学 > 题目详情
已知抛物线C:y=(x+1)2与圆M:(x-1)2+(y-
12
)
2
=r2
(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.
(Ⅰ)求r;
(Ⅱ)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.
分析:(Ⅰ)设A(x0,(x0+1)2),根据y=(x+1)2,求出l的斜率,圆心M(1,
1
2
),求得MA的斜率,利用l⊥MA建立方程,求得A的坐标,即可求得r的值;
(Ⅱ)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y-(t+1)2=2(t+1)(x-t),即y=2(t+1)x-t2+1,若该直线与圆M相切,则圆心M到该切线的距离为
5
2
,建立方程,求得t的值,求出相应的切线方程,可得D的坐标,从而可求D到l的距离.
解答:解:(Ⅰ)设A(x0,(x0+1)2),
∵y=(x+1)2,y′=2(x+1)
∴l的斜率为k=2(x0+1)
当x0=1时,不合题意,所以x0≠1
圆心M(1,
1
2
),MA的斜率k′=
(x0+1)2-
1
2
x0-1

∵l⊥MA,∴2(x0+1)×
(x0+1)2-
1
2
x0-1
=-1
∴x0=0,∴A(0,1),
∴r=|MA|=
5
2

(Ⅱ)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y-(t+1)2=2(t+1)(x-t),即y=2(t+1)x-t2+1
若该直线与圆M相切,则圆心M到该切线的距离为
5
2

|2(t+1)×1-
1
2
-t2+1|
[2(t+1)]2+1
=
5
2

∴t2(t2-4t-6)=0
∴t0=0,或t1=2+
10
,t2=2-
10

抛物线C在点(ti,(ti+1)2)(i=0,1,2)处的切线分别为l,m,n,其方程分别为
y=2x+1①,y=2(t1+1)x-t12+1②,y=2(t2+1)x-t22+1
②-③:x=
t1+t2
2
=2

代入②可得:y=-1
∴D(2,-1),
∴D到l的距离为
|4+1+1|
5
=
6
5
5
点评:本题考查圆与抛物线的综合,考查抛物线的切线方程,考查导数知识的运用,考查点到直线的距离公式的运用,关键是确定切线方程,求得交点坐标.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1,已知抛物线C:y=3x2(x≥0)与直线x=a.直线x=b(其中0≤a≤b)及x轴围成的曲边梯形(阴影部分)的面积可以由公式S=b3-a3来计算,则如图2,过抛物线C:y=3x2(x≥0)上一点A(点A在y轴和直线x=2之间)的切线为l,S1是抛物线y=3x2与切线l及直线y=0所围成图形的面积,S2是抛物线y=3x2与切线l及直线x=2所围成图形的面积,求面积s1+s2的最小值.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y=2x2与直线y=kx+2交于A,B两点,M是线段AB的中点,过M作x轴的垂线,垂足为N,若
NA
NB
=0
,则k=
±4
3
±4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y=
14
x2
在点A处的切线l与直线l':y=x+1平行.
(1)求A点坐标和直线l的方程;
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y=
1
2
(x2+x)
,点A(-1,0),B(0,2),点E是曲线C上的一个动点(E不在直线AB上),设E(x0,y0),C,D在直线AB上,ED⊥AB,EC⊥x轴.
(1)用x0表示
AE
AB
方向上的投影;
(2)
|
AC
|
|
AD
|
2
是否为定值?若是,求此定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y=2x2,直线y=kx+2交C于A,B两点,M是线段AB的中点,过M作轴的垂线交C于点N.  
(1)求三角形OAB面积的最小值;
(2)证明:抛物线C在点N处的切线与AB平行;
(3)是否存在实数k使NANB,若存在,求k的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案