精英家教网 > 高中数学 > 题目详情

若-2≤x≤2,-2≤y≤2,则z的最小值为

(A)-4       (B)-2        (C)-1        (D) 0

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(x-a)2,g(x)=x,x∈R,a为实常数.
(1)若a>0,设F(x)=
f(x)g(x)
,x≠0,用函数单调性的定义证明:函数F(x)在区间[a,+∞)上是增函数;
(2)设关于x的方程f(x)=|g(x)|在R上恰好有三个不相等的实数解,求a的值所组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为A,值域为B,如果存在函数x=g(t),使得函数y=f(g(t))的值域仍然是B,那么称函数x=g(t)是函数f(x)的一个等值域变换.
(1)判断下列函数x=g(t)是不是函数f(x)的一个等值域变换?说明你的理由.
①f(x)=2x+1,x∈R,x=g(t)=t2-2t+3,t∈R;
②f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R;
(2)设函数f(x)=log2(x2-x+1),g(t)=at2+2t+1,若函数x=g(t)是函数f(x)的一个等值域变换,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案