已知函数
.
(Ⅰ)当
时,求函数
的单调区间;
(Ⅱ)当
时,不等式
恒成立,求实数
的取值范围.
(Ⅲ)求证:
(
,e是自然对数的底数).
(Ⅰ)函数
的单调递增区间为
,单调递减区间为
;(Ⅱ)实数a的取值范围是
;(Ⅲ)详见解析.
解析试题分析:(Ⅰ)当
时,求函数
的单调区间,即判断
在各个区间上的符号,只需对
求导即可;(Ⅱ)当
时,不等式
恒成立,即
恒成立,令
(
),只需求出
最大值,让最大值小于等于零即可,可利用导数求最值,从而求出
的取值范围;(Ⅲ)要证
(
成立,即证
,即证
,由(Ⅱ)可知当
时,
在
上恒成立,又因为
,从而证出.
试题解析:(Ⅰ)当
时,
(
),
(
),
由
解得
,由
解得
,故函数
的单调递增区间为
,单调递减区间为
;
(Ⅱ)因当
时,不等式
恒成立,即
恒成立,设
(
),只需
即可.由![]()
,
(ⅰ)当
时,
,当
时,
,函数
在
上单调递减,故
成立;
(ⅱ)当
时,由
,因
,所以
,①若
,即
时,在区间
上,
,则函数
在
上单调递增,
在
上无最大值(或:当
时,
),此时不满足条件;②若
,即
时,函数
在
上单调递减,在区间
上单调递增,同样
在
上无最大值,不满足条件 ;
(ⅲ)当
时,由
,∵
,∴
,
∴
,故函数
在
上单调递减,故
成立.
综上所述,实数a的取值范围是
.
(Ⅲ)据(Ⅱ)知当
时,![]()
![]()
科目:高中数学 来源: 题型:解答题
已知函数
.
(1)若函数
的图象在
处的切线斜率为
,求实数
的值;
(2)在(1)的条件下,求函数
的单调区间;
(3)若函数
在
上是减函数,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分16分)如图,某自来水公司要在公路两侧排水管,公路为东西方向,在路北侧沿直线
排,在路南侧沿直线
排,现要在矩形区域
内沿直线将
与
接通.已知
,
,公路两侧排管费用为每米1万元,穿过公路的
部分的排管费用为每米2万元,设
与
所成的小于
的角为
.![]()
(Ⅰ)求矩形区域
内的排管费用
关于
的函数关系式;
(Ⅱ)求排管的最小费用及相应的角
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知常数
、
、
都是实数,函数
的导函数为
,
的解集为
.
(Ⅰ)若
的极大值等于
,求
的极小值;
(Ⅱ)设不等式
的解集为集合
,当
时,函数
只有一个零点,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com