精英家教网 > 高中数学 > 题目详情

已知常数都是实数,函数的导函数为的解集为
(Ⅰ)若的极大值等于,求的极小值;
(Ⅱ)设不等式的解集为集合,当时,函数只有一个零点,求实数的取值范围.

(Ⅰ);(Ⅱ)当时,函数上只有一个零点.

解析试题分析::1.第(Ⅰ)的解答还是要破费周折的.首先要求出导函数.
然后根据的解集为,通过解混合组,得到进而得到.接下来通过研究函数的单调性,由的极大值等于,可解得,这样就可以求出的极小值.2.第(Ⅱ)问先由不等式的解集为集合,可以解得.然后研究的单调性,值得注意的是,换句话说方程两边对求导数,应看作是常数.单调性弄清楚后,还要比较的大小.然后根据只有一个零点,列出,最后解之即可.值得注意的是,很多考生漏了.
试题解析:(Ⅰ)∵,∴.
∵不等式的解集为
∴不等式的解集为.
 
.
∴当时,,即为单调递减函数;
时,,即为单调递增函数.
∴当时,取得极大值,当时,取得极小值.
由已知得,解得.
.
的极小值.
(Ⅱ)∵
,解得,即.
,∴.
∴当时,,即为单调递减函数;
时,,即为单调递增函数.
∴当时,为单调递减函数;
时,为单调递增函数.


.
上只有一个零点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当时,讨论函数在[上的单调性;
(Ⅱ)如果是函数的两个零点,为函数的导数,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当时,不等式恒成立,求实数的取值范围.
(Ⅲ)求证:,e是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=alnx,a∈R.
(Ⅰ)当f(x)存在最小值时,求其最小值φ(a)的解析式;
(Ⅱ)对(Ⅰ)中的φ(a),
(ⅰ)当a∈(0,+∞)时,证明:φ(a)≤1;
(ⅱ)当a>0,b>0时,证明:φ′()≤≤φ′().

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数)的图象在处的切线与轴平行.
(1)确定实数的正、负号;
(2)若函数在区间上有最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且函数在点处的切线方程为.
(Ⅰ)求函数的解析式;
(Ⅱ)设点,当时,直线的斜率恒小于,试求实数的取值范围;
(Ⅲ)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知处取得极值。
(Ⅰ)证明:
(Ⅱ)是否存在实数,使得对任意?若存在,求的所有值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数 (为常数)
(Ⅰ)=2时,求的单调区间;
(Ⅱ)当时,,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设l为曲线C:在点(1,0)处的切线.
(I)求l的方程;
(II)证明:除切点(1,0)之外,曲线C在直线l的下方

查看答案和解析>>

同步练习册答案