已知函数f(x)=
-
alnx,a∈R.
(Ⅰ)当f(x)存在最小值时,求其最小值φ(a)的解析式;
(Ⅱ)对(Ⅰ)中的φ(a),
(ⅰ)当a∈(0,+∞)时,证明:φ(a)≤1;
(ⅱ)当a>0,b>0时,证明:φ′(
)≤
≤φ′(
).
(Ⅰ)φ(a)=a-alna(a>0);(Ⅱ)详见解析.
解析试题分析:(Ⅰ)利用导数分析函数单调性,求最值;(Ⅱ)利用导数分析函数单调性,分类讨论.
试题解析:(Ⅰ)求导数,得f ′(x)=
-
=
(x>0).
(1)当a≤0时,f ′(x)=
>0,f(x)在(0,+∞)上是增函数,无最小值.
(2)当a>0时,令f ′(x)=0,解得x=a2.
当0<x<a2时,f ′(x)<0,∴f(x)在(0,a2)上是减函数;
当x>a2时,f ′(x)>0,∴f(x)在(a2,+∞)上是增函数.
∴f(x)在x=a2处取得最小值f(a2)=a-alna.
故f(x)的最小值φ(a)的解析式为φ(a)=a-alna(a>0). 6分
(Ⅱ)由(Ⅰ),知φ(a)=a-alna(a>0),
求导数,得φ′(a)=-lna.
(ⅰ)令φ′(a)=0,解得a=1.
当0<a<1时,φ′(a)>0,∴φ(a)在(0,1)上是增函数;
当a>1时,φ′(a)<0,∴φ(a)在(1,+∞)上是减函数.
∴φ(a)在a=1处取得最大值φ(1)=1.
故当a∈(0,+∞)时,总有φ(a)≤1. 10分
(ⅱ)当a>0,b>0时,
=-
=-ln
, ①
φ′(
)=-ln(
)≤-ln
, ②
φ′(
)=-ln(
)≥-ln
=-ln
, ③
由①②③,得φ′(
)≤
≤φ′(
). 14分
考点:导数,函数的单调性,最值.
科目:高中数学 来源: 题型:解答题
已知函数
,设曲线
在与
轴交点处的切线为
,
为
的导函数,满足
.
(1)求
;
(2)设
,
,求函数
在
上的最大值;
(3)设
,若对于一切
,不等式
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
.
(1)若函数
的图象在
处的切线斜率为
,求实数
的值;
(2)在(1)的条件下,求函数
的单调区间;
(3)若函数
在
上是减函数,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分16分)如图,某自来水公司要在公路两侧排水管,公路为东西方向,在路北侧沿直线
排,在路南侧沿直线
排,现要在矩形区域
内沿直线将
与
接通.已知
,
,公路两侧排管费用为每米1万元,穿过公路的
部分的排管费用为每米2万元,设
与
所成的小于
的角为
.![]()
(Ⅰ)求矩形区域
内的排管费用
关于
的函数关系式;
(Ⅱ)求排管的最小费用及相应的角
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知常数
、
、
都是实数,函数
的导函数为
,
的解集为
.
(Ⅰ)若
的极大值等于
,求
的极小值;
(Ⅱ)设不等式
的解集为集合
,当
时,函数
只有一个零点,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com