精英家教网 > 高中数学 > 题目详情

已知函数,设曲线在与轴交点处的切线为的导函数,满足
(1)求
(2)设,求函数上的最大值;
(3)设,若对于一切,不等式恒成立,求实数的取值范围.

(1);(2);(3)

解析试题分析:(1)三次函数的导数是二次函数,由,知其对称轴,曲线的切线问题,可利用导数的几何意义(切点处切线的斜率)列出方程组求解;(2),画出函数图象考察其单调性,根据其单调区间对的值分类讨论求出其最大值;(3)对不等式进行化简,得恒成立,即,且,对任意的成立,然后又转化为求函数的最值问题,要注意,从而有.
试题解析:(1),∵
∴函数的图象关于直线对称,,       2分
∵曲线在与轴交点处的切线为,∴切点为
,解得,则        5分
(2)∵
,其图象如图           7分
时,
时,
时,

综上                 10分
(3)
时,,所以不等式等价于恒成立,
解得,且,                      13分
,得,所以
,∵,∴所求的实数的的取值范围是    16分
考点:函数与导数、曲线的切线、不等式恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若上是增函数,求实数的取值范围.
(Ⅱ)若的一个极值点,求上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的值域;
(2)设,函数.若对任意,总存在,使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln-a+x(a>0).
(Ⅰ)若,求f(x)图像在x=1处的切线的方程;
(Ⅱ)若的极大值和极小值分别为m,n,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,若在点处的切线斜率为
(Ⅰ)用表示
(Ⅱ)设,若对定义域内的恒成立,
(ⅰ)求实数的取值范围;
(ⅱ)对任意的,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(Ⅰ)讨论函数的单调性;
(Ⅱ)若,证明:时,成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当时,讨论函数在[上的单调性;
(Ⅱ)如果是函数的两个零点,为函数的导数,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若内恒成立,求实数的取值范围.
(Ⅲ),求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=alnx,a∈R.
(Ⅰ)当f(x)存在最小值时,求其最小值φ(a)的解析式;
(Ⅱ)对(Ⅰ)中的φ(a),
(ⅰ)当a∈(0,+∞)时,证明:φ(a)≤1;
(ⅱ)当a>0,b>0时,证明:φ′()≤≤φ′().

查看答案和解析>>

同步练习册答案