精英家教网 > 高中数学 > 题目详情

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若内恒成立,求实数的取值范围.
(Ⅲ),求证:

(Ⅰ)当时,单调递减,在上单调递增;
时,单调递减,在,上单调递增;
时,上单调递增;
时,单调递减, 在,上单调递增;
(Ⅱ)
(Ⅲ)详见解析

解析试题分析:(Ⅰ)利用导数的符号确定函数的单调区间。函数含有参数,故需要分情况讨论.
(Ⅱ)思路一、一般地若任意使得,则;若任意使得,则.由得:恒成立,所以小于等于的最小值.
思路二、除外,的一个极值点,故可首先考虑这个特殊值.由得: ,这样只需考虑内是否恒成立.这是本题的特点,需要仔细观察、分析.若发现其特点,则运算大大简化.所以这个题有较好的区分度.
(Ⅲ)涉及数列求和的不等式的证明,一般有两种类型,一种是先求和,后放缩;一种先放缩,后求和.
本题显然属于后者.
解答题中的最后一问,往往要用前面的结论,本题也不例外.由(Ⅱ)取可得:,由此可将不等式左边各项放缩.
但是如果第一项也用这个结论来放缩,则得不到右边的式子.这时就考虑从第二项开始,或从第三项开始用这个结论.
试题解析:(Ⅰ)
时,单调递减,在上单调递增;
时,单调递减,在,上单调递增;
时,上单调递增;
时,单调递减, 在,上单调递增.
(Ⅱ)法一、由得:
,则
,则
所以由
所以内单调递减,在内单调递增.所以
从而
法二、由得:
时, 单调递减,在上单调递增
所以即:
所以若内恒成立,实数的取值范围为.
(Ⅲ)由(Ⅱ)知: 又时, (时取等号)
所以当时:
,所以

考点:本题考查函数的导数、导数的应用及不等式的证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)设为函数的极值点,求证:
(Ⅱ)若当时,恒成立,求正整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,设曲线在与轴交点处的切线为的导函数,满足
(1)求
(2)设,求函数上的最大值;
(3)设,若对于一切,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求的延长线上,的延长线上,且对角线点.已知米,米。

(1)设(单位:米),要使花坛的面积大于32平方米,求的取值范围;
(2)若(单位:米),则当的长度分别是多少时,花坛的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)若时,记存在使
成立,求实数的取值范围;
(2)若上存在最大值和最小值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数 (R),且该函数曲线处的切线与轴平行.
(Ⅰ)讨论函数的单调性;
(Ⅱ)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的一个极值点.
(Ⅰ) 求的值;  
(Ⅱ) 求函数的单调递减区间;
(Ⅲ)设,试问过点可作多少条直线与曲线相切?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数的图象在处的切线斜率为,求实数的值;
(2)在(1)的条件下,求函数的单调区间;
(3)若函数上是减函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数),且在点处的切线平行于轴.
(Ⅰ)求实数的值;
(Ⅱ)求函数的单调区间.

查看答案和解析>>

同步练习册答案