精英家教网 > 高中数学 > 题目详情

设函数,若在点处的切线斜率为
(Ⅰ)用表示
(Ⅱ)设,若对定义域内的恒成立,
(ⅰ)求实数的取值范围;
(ⅱ)对任意的,证明:

(Ⅰ)(Ⅱ)详见解析.

解析试题分析:(Ⅰ) 利用导数的几何意义“曲线在某点处的导数值等于该点处切线的斜率”来求;(Ⅱ)利用导数研究单调性,进而求最值.
试题解析:(Ⅰ),依题意有:; 
(Ⅱ)恒成立.
(ⅰ)恒成立,即.  
方法一:恒成立,则
时,
,
单调递增,
 单调递减,
,符合题意,即恒成立.
所以,实数的取值范围为.    
方法二:
①当时,单调递减,当 单调递增,则,不符题意;
②当时,

(1)若单调递减;当 单调递增,则,不符题意;
(2)若
单调递减,
这时,不符题意;
单调递减,这时,不符题意;
单调递增;当 单调递减,则,符合题意;
综上,得恒成立,实数的取值范围为
方法三:易证

,∴
,即时,,即恒成立;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)若对一切x∈R,≥1恒成立,求a的取值集合;
(2)在函数的图像上取定两点,记直线AB的斜率   为k,问:是否存在x0∈(x1,x2),使成立?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 (为实常数)  
(1)当时,求函数上的最大值及相应的值;
(2)当时,讨论方程根的个数
(3)若,且对任意的,都有,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求最小值;
(2)若存在单调递减区间,求的取值范围;
(3)求证:).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分共12分)已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2
(Ⅰ)求a,b,c,d的值
(Ⅱ)若x≥-2时,f(x)≤kg(x),求k的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,设曲线在与轴交点处的切线为的导函数,满足
(1)求
(2)设,求函数上的最大值;
(3)设,若对于一切,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若函数在区间上存在极值,求实数的取值范围;
(Ⅱ)如果当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)若时,记存在使
成立,求实数的取值范围;
(2)若上存在最大值和最小值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)如图,某自来水公司要在公路两侧排水管,公路为东西方向,在路北侧沿直线排,在路南侧沿直线排,现要在矩形区域内沿直线将接通.已知,公路两侧排管费用为每米1万元,穿过公路的部分的排管费用为每米2万元,设所成的小于的角为

(Ⅰ)求矩形区域内的排管费用关于的函数关系式;
(Ⅱ)求排管的最小费用及相应的角

查看答案和解析>>

同步练习册答案