精英家教网 > 高中数学 > 题目详情

已知函数,且函数在点处的切线方程为.
(Ⅰ)求函数的解析式;
(Ⅱ)设点,当时,直线的斜率恒小于,试求实数的取值范围;
(Ⅲ)证明:.

(Ⅰ);(Ⅱ);(Ⅲ)详见解析.

解析试题分析:(Ⅰ)根据函数在点处的切线方程为,这一条件分离出两个条件,然后根据这两个条件列有关的二元一次方程组,解出的值进而确定函数的解析式;(Ⅱ)先将直线的斜率利用点的坐标表示,然后建立以为自变量的函数,对参数进行分类讨论,即可求出参数的取值范围;(Ⅲ)证明不等式,构造函数
,等价转化为,借助极小值,但同时需要注意有些时候相应整体的代换.
试题解析:(Ⅰ).   1分
函数在点处的切线方程为
  即, 解得,   2分
.     3分
(Ⅱ)由,得
∴“当时,直线的斜率恒小于时,恒成立恒成立.   4分
.
,   5分
(ⅰ)当时,由,知恒成立,
单调递增,
,不满足题意的要求.   6分
(ⅱ)当时,

∴当 ,;当.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求的延长线上,的延长线上,且对角线点.已知米,米。

(1)设(单位:米),要使花坛的面积大于32平方米,求的取值范围;
(2)若(单位:米),则当的长度分别是多少时,花坛的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数的图象在处的切线斜率为,求实数的值;
(2)在(1)的条件下,求函数的单调区间;
(3)若函数上是减函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的极大值;
(2)记的导函数为,若时,恒有成立,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知常数都是实数,函数的导函数为的解集为
(Ⅰ)若的极大值等于,求的极小值;
(Ⅱ)设不等式的解集为集合,当时,函数只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数F(x )=x2+aln(x+1)
(I)若函数y=f(x)在区间[1,+∞)上是单调递增函数,求实数a的取值范围;
(II)若函数y=f(x)有两个极值点x1,x2,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数),且在点处的切线平行于轴.
(Ⅰ)求实数的值;
(Ⅱ)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数   
(Ⅰ)若时有极值,求实数的值和的单调区间;
(Ⅱ)若在定义域上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(I)证明当 
(II)若不等式取值范围.

查看答案和解析>>

同步练习册答案