已知函数,,且函数在点处的切线方程为.
(Ⅰ)求函数的解析式;
(Ⅱ)设点,当时,直线的斜率恒小于,试求实数的取值范围;
(Ⅲ)证明:.
(Ⅰ);(Ⅱ);(Ⅲ)详见解析.
解析试题分析:(Ⅰ)根据函数在点处的切线方程为,这一条件分离出两个条件,然后根据这两个条件列有关和的二元一次方程组,解出和的值进而确定函数的解析式;(Ⅱ)先将直线的斜率利用点的坐标表示,然后建立以为自变量的函数,对参数进行分类讨论,即可求出参数的取值范围;(Ⅲ)证明不等式,构造函数
,等价转化为,借助极小值,但同时需要注意有些时候相应整体的代换.
试题解析:(Ⅰ),. 1分
函数在点处的切线方程为,
即, 解得, 2分
. 3分
(Ⅱ)由、,得,
∴“当时,直线的斜率恒小于”当时,恒成立对恒成立. 4分
令,.
则, 5分
(ⅰ)当时,由,知恒成立,
∴在单调递增,
∴,不满足题意的要求. 6分
(ⅱ)当时,,,
,
∴当 ,;当,.
即
科目:高中数学 来源: 题型:解答题
如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求在的延长线上,在的延长线上,且对角线过点.已知米,米。
(1)设(单位:米),要使花坛的面积大于32平方米,求的取值范围;
(2)若(单位:米),则当,的长度分别是多少时,花坛的面积最大?并求出最大面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数.
(1)若函数的图象在处的切线斜率为,求实数的值;
(2)在(1)的条件下,求函数的单调区间;
(3)若函数在上是减函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知常数、、都是实数,函数的导函数为,的解集为.
(Ⅰ)若的极大值等于,求的极小值;
(Ⅱ)设不等式的解集为集合,当时,函数只有一个零点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数F(x )=x2+aln(x+1)
(I)若函数y=f(x)在区间[1,+∞)上是单调递增函数,求实数a的取值范围;
(II)若函数y=f(x)有两个极值点x1,x2且,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com