精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=x3-12x,若f(x)在区间(2m,m+1)上单调递减,则实数m的取值范围是[-1,1).

分析 由函数f(x)=x3-12x在(2m,m+1)内单调递减转化成f′(x)≤0在(2m,m+1)内恒成立,得到关于m的关系式,即可求出m的范围.

解答 解:∵函数f(x)=x3-12x在(2m,m+1)上单调递减,
∴f'(x)=3x2-12≤0在(2m,m+1)上恒成立.
故 $\left\{\begin{array}{l}f′(2m)≤0\\ f′(m+1)≤0\\ 2m<m+1\end{array}\right.$,即$\left\{\begin{array}{l}8{m}^{3}-24m≤0\\(m+1)^{3}-12(m+1)≤0\\ 2m<m+1\end{array}\right.$成立.
解得-1≤m<1
故答案为:[-1,1).

点评 此题主要考查利用导函数的正负判断原函数的单调性,考查函数的恒成立,转化思想的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,有以下四个命题
①直线SC与平面ABC所成的角的正弦值为$\frac{\sqrt{3}}{3}$;
②∠SCA=60°;
③若点D为直径SC上一点,且$\frac{SD}{CD}$=3,则SC⊥平面ABD;
④在球O内任取一点P,则P落在三棱锥S-ABC内的概率是$\frac{\sqrt{2}}{8π}$.
其中正确命题有②③④(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=2sin(ωx+$\frac{π}{4}$)(ω>0)与函数g(x)=cos(ωx+φ)(|φ|<$\frac{π}{2}$)的对称轴完全相同,则φ=(  )
A.-$\frac{π}{4}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.-$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,边长为$\sqrt{2}$的正方形中心在原点,四个顶点都在坐标轴上,求向量$\overrightarrow{AB}$,$\overrightarrow{BC}$,$\overrightarrow{CD}$,$\overrightarrow{DA}$,$\overrightarrow{AC}$,$\overrightarrow{BD}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.从含有两件正品a1,a2和一件次品b1的3件产品中每次任取1件,每次取出后不放回,连续取两次.
(1)求取出的两件产品中恰有一件次品的概率;
(2)如果将“每次取出后不放回”这一条件换成“每次取出后放回”,则取出的两件产品中恰有一件次品的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求值:
①cos36°cos72°+tan15°tan30°+tan15°+tan30°
②$ln({e\sqrt{e}})+{log_2}({{{log}_2}16})-{({\sqrt{2\sqrt{2}}})^{\frac{4}{3}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.f(x)=x2+2x的单调递增区间为[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.命题“若x=2,则x>1”的逆否命题是(  )
A.若x>1,则x=2B.若x=2,则x≤1C.若x≠2,则x≤1D.若x≤1,则x≠2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在四面体ABCD中,E,F分别是棱BC,AD的中点,设$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow b$,$\overrightarrow{AD}$=$\overrightarrow c$,且$\overrightarrow{EF}$=$x\overrightarrow a+y\overrightarrow b+z\overrightarrow c$,则x,y,z的值分别为(  )
A.$-\frac{1}{2},-\frac{1}{2},\frac{1}{2}$B.$-\frac{1}{2},\frac{1}{2},-\frac{1}{2}$C.$\frac{1}{2},\frac{1}{2},-\frac{1}{2}$D.$\frac{1}{2},-\frac{1}{2},\frac{1}{2}$

查看答案和解析>>

同步练习册答案