()(本小题满分12分)
甲、乙两名跳高运动员一次试跳2米高度成功的概率分别为0.7、0.6,且每次试跳成功与否相互之间没有影响,求:
(I)甲试跳三次,第三次才能成功的概率;
(II)甲、乙两人在第一次试跳中至少有一人成功的概率;
(III)甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.
0.063., 0.88.,0.3024.
解:记“甲第i次试跳成功”为事件A1,“乙第i次试跳成功”为事件B1.
依题意得P(A1)=0.7,P(B1)=0.6,且A1B1(i=1,2,3)相互独立.
(I)“甲第三次试跳才成功”为事件
A3,且三次试跳相互独立,
∴P(
A3)=P(
)P
=0.3×0.3×0.7=0.063.
答:甲第三次试跳才成功的概率为0.063.
(II)甲、乙两支在第一次试跳中至少有一人成功为事件C,
解法一:C=A1
彼此互斥,
∴P(C)![]()
=![]()
=0.7×0.4+0.3×0.6+0.7×0.6
= 0.88.
解法二:P(C)=1-
=1-0.3×0.4=0.88.
答:甲、乙两人在第一次试跳中至少有一人成功的概率为0.88.
(III)设“甲在两次试跳中成功i次”为事件Mi(i=0,1,2),
“乙在两次试跳中成功i次”为事件Ni(i=0,1,2),
∵事件“甲、乙各试跳两次,甲比乙的成功次数恰好多一次”可表示为M1N0+M2N1,且M1N0、M2N1为互斥事件.
∴所求的概率为
![]()
![]()
=
×0.7×0.3×0.42+0.72×
×0.6×0.4
=0.0672+0.2352
=0.3024.
答:甲、乙每人试跳两次,甲比乙的成功次数恰好多一次的概率为0.3024.
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)已知关于
的一元二次函数
(Ⅰ)设集合P={1,2, 3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为
和
,求函数
在区间[
上是增函数的概率;(Ⅱ)设点(
,
)是区域
内的随机点,求函数
上是增函数的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分) 一几何体
的三视图如图所示,
,A1A=
,AB=
,AC=2,A1C1=1,
在线段
上且
=
.
(I)证明:平面
⊥平面
;
(II)求二面角
的余弦值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com