精英家教网 > 高中数学 > 题目详情
17.函数$f(x)=3sin({\frac{2π}{3}-2x})$的一个单调递增区间是(  )
A.$[{\frac{7π}{12},\frac{13π}{12}}]$B.$[{\frac{π}{12},\frac{7π}{12}}]$C.$[{-\frac{π}{2},\frac{π}{2}}]$D.$[{-\frac{5π}{6},\frac{π}{6}}]$

分析 利用诱导公式化简函数的解析式,再利用余弦函数的单调性,求得f(x)的一个增区间.

解答 解:对于函数$f(x)=3sin({\frac{2π}{3}-2x})$=3cos($\frac{π}{6}$-2x)=3cos(2x-$\frac{π}{6}$),
令2kπ-π≤2x-$\frac{π}{6}$≤2kπ,求得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,可得函数的增区间为[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z,
令k=1,可得选项A正确,
故选:A.

点评 本题主要考查诱导公式、余弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A,B,C的对边分别为a,b,c,∠B=$\frac{π}{3}$,c=4,$\overrightarrow{CB}$$•\overrightarrow{CA}$=-1,则b=$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示,在边长为1的正方形f(x)中任取一点f(x),则点[-1,1)恰好取自阴影部分的概率为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,过椭圆的焦点且与长轴垂直的弦长为1.
(1)求椭圆C的方程;
(2)设点M为椭圆上位于第一象限内一动点,A,B分别为椭圆的左顶点和下顶点,直线MB与x轴交于点C,直线MA与轴交于点D,求证:四边形ABCD的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列{an}的公差d=2,a3=5,数列{bn},bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,则数列{bn}的前10项的和为(  )
A.$\frac{10}{21}$B.$\frac{20}{21}$C.$\frac{10}{19}$D.$\frac{20}{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f (x)=sinx+$\sqrt{3}$cosx (x∈R).
(Ⅰ)求函数f (x)的周期和最大值;
(Ⅱ)若f (A+$\frac{π}{6}$)=$\frac{2}{3}$,求cos2A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系中,椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别为F1,F2,其中F2也是抛物线C2:y2=4x的焦点,点P为C1与C2在第一象限的交点,且$|P{F_2}|=\frac{5}{3}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)过F2且与坐标轴不垂直的直线交椭圆于M、N两点,若线段OF2上存在定点T(t,0)使得以TM、TN为邻边的四边形是菱形,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.以直角坐标系xOy的原点为极点,x轴的正半轴为极轴建立极坐标系,两坐标系中的单位长度相同.已知点A的极坐标为(${\sqrt{2}$,$\frac{π}{4}}$),曲线C在直角坐标系下参数方程为$\left\{\begin{array}{l}x=\sqrt{2}cost\\ y=\sqrt{2}sint\end{array}$(t为参数),曲线C在点A处的切线为l.
(1)求切线l的极坐标方程;
(2)已知点P直角坐标为(-$\frac{1}{4}$,$\frac{{\sqrt{3}}}{4}$),过点P任作一直线交曲线C于A,B两点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,已知三棱锥S-ABC中,SA=SB=CA=CB=$\sqrt{3}$,AB=2,SC=$\sqrt{2}$,则二面角S-AB-C的平面角的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步练习册答案