精英家教网 > 高中数学 > 题目详情
(2013•东城区一模)在△ABC中,三个内角A,B,C的对边分别为a,b,c,且bsinA=
3
acosB

(Ⅰ)求角B;
(Ⅱ)若b=2
3
,求ac的最大值.
分析:(Ⅰ)因为bsinA=
3
acosB
,由正弦定理求得tanB=
3
,从而求得B的值.
(Ⅱ)由余弦定理求得12=a2+c2-ac,再利用基本不等式求得ac的最大值.
解答:解:(Ⅰ)因为bsinA=
3
acosB
,由正弦定理可得sinBsinA=
3
sinAcosB

因为在△ABC中,sinA≠0,所以tanB=
3

又0<B<π,所以B=
π
3

(Ⅱ)由余弦定理 b2=a2+c2-2accosB,因为B=
π
3
b=2
3
,所以12=a2+c2-ac.
因为a2+c2≥2ac,所以ac≤12.
当且仅当a=c=2
3
时,ac取得最大值12.
点评:本题主要考查正弦定理、余弦定理以及基本不等式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•东城区一模)设A是由n个有序实数构成的一个数组,记作:A=(a1,a2,…,ai,…,an).其中ai(i=1,2,…,n)称为数组A的“元”,S称为A的下标.如果数组S中的每个“元”都是来自 数组A中不同下标的“元”,则称A=(a1,a2,…,an)为B=(b1,b2,…bn)的子数组.定义两个数组A=(a1,a2,…,an),B=(b1,b2,…,bn)的关系数为C(A,B)=a1b1+a2b2+…+anbn
(Ⅰ)若A=(-
1
2
1
2
)
,B=(-1,1,2,3),设S是B的含有两个“元”的子数组,求C(A,S)的最大值;
(Ⅱ)若A=(
3
3
3
3
3
3
)
,B=(0,a,b,c),且a2+b2+c2=1,S为B的含有三个“元”的子数组,求C(A,S)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区一模)某游戏规则如下:随机地往半径为1的圆内投掷飞标,若飞标到圆心的距离大于
1
2
,则成绩为及格;若飞标到圆心的距离小于
1
4
,则成绩为优秀;若飞标到圆心的距离大于
1
4
且小于
1
2
,则成绩为良好,那么在所有投掷到圆内的飞标中得到成绩为良好的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区一模)函数f(x)=sin(x-
π
3
)
的图象为C,有如下结论:
①图象C关于直线x=
6
对称;
②图象C关于点(
3
,0)
对称;
③函数f(x)在区间[
π
3
6
]
内是增函数,
其中正确的结论序号是
①②③
①②③
.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区一模)已知全集U={1,2,3,4},集合A={1,2},那么集合?UA为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区一模)数列{an}的各项排成如图所示的三角形形状,其中每一行比上一行增加两项,若an=an(a≠0),则位于第10行的第8列的项等于
a89
a89
,a2013在图中位于
第45行的第77列
第45行的第77列
.(填第几行的第几列)

查看答案和解析>>

同步练习册答案