精英家教网 > 高中数学 > 题目详情
(2011•孝感模拟)对于正整数j,设aj,k=j-3(k-1)(k=1,2,3…),如a3,4=3-3(4-1)=-6,对于正数m、n,当n≥2,m≥2时,设b(j,n)=aj,1+aj,2+aj,3+…+aj,n,则b(1,n)=
1
2
(-3n2+5n)
1
2
(-3n2+5n)
;设S(m,n)=b(1,n)+b(2,n)+b(3,n)+…+b(m,n),则S(5,6)=
-135
-135
分析:依据定义可将b(1,n)表示为 a1,1+a1,2+a1,3+…+a1,n,进而可转化为4n-3(1+2+…+n),利用等差数列的求和公式可以解决;先理解定义得S(5,6)=b(1,6)+b(2,6)+b(3,6)+b(4,6)+b(5,6),再分别求和即可.
解答:解:由题意,b(1,n)=a1,1+a1,2+a1,3+…+a1,n=[1-3(1-1)]+[1-3(2-1)]+…+[1-3(n-1)]
=4n-3(1+2+…+n)=
1
2
(-3n2+5n)

b(m,n)=am,1+am,2+am,3+…+am,n=[m-3(1-1)]+[m-3(2-1)]+…+[m-3(n-1]
=n(m+3)-3(1+2+…+n)=
3n+2nm-3n2
2

∴S(5,6)=b(1,6)+b(2,6)+b(3,6)+b(4,6)+b(5,6)=-135
故答案为
1
2
(-3n2+5n)
,-135
点评:本题的考点是数列的应用,主要考查新定义,考查等差数列的求和和问题,关键是理解新定义,合理地转化为数列的求和,计算时要细心.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•孝感模拟)已知f(x)=2sin(ωx+φ)的部分图象如图所示,则f(x)的表达式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•孝感模拟)已知函数f(x+2)=
log2(-x),x<0
(
1
2
)x,x≥0
,则f(-2)+f(log212)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•孝感模拟)如图,正四面体ABCD的外接球球心为D,E是BC的中点,则直线OE与平面BCD所成角的正切值为
2
2
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•孝感模拟)已知函数f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2mx+4

(I)求函数f(x)的单调区间;
(Ⅱ)若对任意x1∈(0,2),总存在x2∈[1,2]使f(x1)≥g(x2),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•孝感模拟)设向量
a
=(
3
2
,cosθ),向量
b
=(sinθ,
1
3
),其
a
b
,则锐角θ为(  )

查看答案和解析>>

同步练习册答案