精英家教网 > 高中数学 > 题目详情
已知A、B、C是椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)
上的三点,其中点A的坐标为(2
3
,0)
,BC过椭圆M的中心,且
AC
BC
=0,|
BC
|=2|
AC
|

(1)求椭圆M的方程;
(2)过点(0,t)的直线l(斜率存在时)与椭圆M交于两点P、Q,设D为椭圆M与y轴负半轴的交点,且|
DP
|=|
DQ
|
,求实数t的取值范围.
分析:(1)根据点A的坐标求出a,然后根据
AC
BC
=0
求出b,综合即可求出椭圆M的方程.
(2)根据题意设出直线方程,与(1)中M的方程联立,然后运用设而不求韦达定理进行计算,求出实数t的取值范围.
解答:精英家教网解:(1)∵点A的坐标为(2
3
,0
,)
a=2
3
,椭圆方程为
x2
12
+
y2
b2
=1
                 ①
又∵|
BC
|=2|
AC
|
.,且BC过椭圆M的中心O(0,0),
|
OC
|=|
AC
|

又∵
AC
BC
=0

∴△AOC是以∠C为直角的等腰三角形,
易得C点坐标为(
3
3

将(
3
3
)代入①式得b2=4
∴椭圆M的方程为
x2
12
+
y2
4
=1

(2)当直线l的斜率k=0,直线l的方程为y=t
则满足题意的t的取值范围为-2<t<2
当直线l的斜率k≠0时,设直线l的方程为y=kx+t
精英家教网
y=kx+t
x2
12
+
y2
4
=1

得(3k2+1)x2+6ktx+3t2-12=0
∵直线l与椭圆M交于两点P、Q,
∴△=(6kt)2-4(3k2+1)(3t2-12)>0
即t2<4+12k2
设P(x1,y1),Q(x2,y2),
PQ中点H(x0,y0),
则H的横坐标x0=
x1+x2
2
=
-3kt
3k2+1

纵坐标y0=kx0+t=
t
3k2+1

D点的坐标为(0,-2)
|
DP
|=|
DQ
|

得DH⊥PQ,kDH•kPQ=-1,
t
3k2+1
+2
-
3kt
3k2+1
•k=-1

即t=1+3k2.                                       ③
∴k2>0,∴t>1.                                 ④
由②③得0<t<4,
结合④得到1<t<4.
综上所述,-2<t<4.
点评:本题考查直线与圆锥曲线的综合问题,以及椭圆的标准方程问题.涉及直线与椭圆的位置关系,以及熟练运用韦达定理的方法.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,已知A,B,C是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
上的三点,其中点A的坐标为(2
3
,0),BC
过椭圆的中心O,且AC⊥BC,|BC|=2|AC|.
(Ⅰ)求点C的坐标及椭圆E的方程;
(Ⅱ)若椭圆E上存在两点P,Q,使得∠PCQ的平分线总是垂直于x轴,试判断向量
PQ
AB
是否共线,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C是椭圆m:
x2
a2
+
y2
b2
=1(a>b>0)上的三点,其中点A的坐标为(2
3
,0),BC过椭圆m的中心,且
AC
BC
=0
,且|
BC
|=2|
AC
|.
(1)求椭圆m的方程;
(2)过点M(0,t)的直线l(斜率存在时)与椭圆m交于两点P,Q,设D为椭圆m与y轴负半轴的交点,且|
DP
|=|
DQ
|.求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知A、B、C是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)上的三点,,BC过椭圆的中心O,且AC⊥BC,|BC|=2|AC|.则椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•北京)已知A,B,C是椭圆W:
x24
+y2=1
上的三个点,O是坐标原点.
(Ⅰ)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;
(Ⅱ)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.

查看答案和解析>>

同步练习册答案