精英家教网 > 高中数学 > 题目详情
(2013•北京)已知A,B,C是椭圆W:
x24
+y2=1
上的三个点,O是坐标原点.
(Ⅰ)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;
(Ⅱ)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.
分析:(I)根据B的坐标为(2,0)且AC是OB的垂直平分线,结合椭圆方程算出A、C两点的坐标,从而得到线段AC的长等于
3
.再结合OB的长为2并利用菱形的面积公式,即可算出此时菱形OABC的面积;
(II)若四边形OABC为菱形,根据|OA|=|OC|与椭圆的方程联解,算出A、C的横坐标满足
3x2
4
=r2-1,从而得到A、C的横坐标相等或互为相反数.再分两种情况加以讨论,即可得到当点B不是W的顶点时,四边形OABC不可能为菱形.
解答:解:(I)∵四边形OABC为菱形,B是椭圆的右顶点(2,0)
∴直线AC是BD的垂直平分线,可得AC方程为x=1
设A(1,t),得
12
4
+t2=1
,解之得t=
3
2
(舍负)
∴A的坐标为(1,
3
2
),同理可得C的坐标为(1,-
3
2

因此,|AC|=
3
,可得菱形OABC的面积为S=
1
2
|AC|•|B0|=
3

(II)∵四边形OABC为菱形,∴|OA|=|OC|,
设|OA|=|OC|=r(r>1),得A、C两点是圆x2+y2=r2
与椭圆W:
x2
4
+y2=1
的公共点,解之得
3x2
4
=r2-1
设A、C两点横坐标分别为x1、x2,可得A、C两点的横坐标满足
x1=x2=
2
3
3
r2-1
,或x1=
2
3
3
r2-1
且x2=-
2
3
3
r2-1

①当x1=x2=
2
3
3
r2-1
时,可得若四边形OABC为菱形,则B点必定是右顶点(2,0);
②若x1=
2
3
3
r2-1
且x2=-
2
3
3
r2-1
,则x1+x2=0,
可得AC的中点必定是原点O,因此A、O、C共线,可得不存在满足条件的菱形OABC
综上所述,可得当点B不是W的顶点时,四边形OABC不可能为菱形.
点评:本题给出椭圆方程,探讨了以坐标原点O为一个顶点,其它三个顶点在椭圆上的菱形问题,着重考查了菱形的性质、椭圆的标准方程与简单几何性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•北京)已知函数f(x)=x2+xsinx+cosx.
(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;
(Ⅱ)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•北京)已知函数f(x)=(2cos2x-1)sin2x+
1
2
cos4x

(Ⅰ)求f(x)的最小正周期及最大值;
(Ⅱ)若α∈(
π
2
,π),且f(α)=
2
2
,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•北京)已知点A(1,-1),B(3,0),C(2,1).若平面区域D由所有满足
AP
AB
AC
(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•北京)已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an+1,an+2…的最小值记为Bn,dn=An-Bn
(Ⅰ)若{an}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N*,an+4=an),写出d1,d2,d3,d4的值;
(Ⅱ)设d是非负整数,证明:dn=-d(n=1,2,3…)的充分必要条件为{an}是公差为d的等差数列;
(Ⅲ)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.

查看答案和解析>>

同步练习册答案