精英家教网 > 高中数学 > 题目详情
8.函数f(x)=x2-alnx(a∈R)(a∈R)不存在极值点,则a的取值范围是(  )
A.(-∞,0)B.(0,+∞)C.[0,+∞)D.(-∞,0]

分析 求出函数的导数,问题转化为a<2x2在(0,+∞)恒成立,求出a的范围即可.

解答 解:f(x)的定义域是(0,+∞),
f′(x)=2x-$\frac{a}{x}$=$\frac{{2x}^{2}-a}{x}$,
若f(x)在(0,+∞)不存在极值点,
则a<2x2在(0,+∞)恒成立,
故a≤0,
故选:D.

点评 本题考查了导数的应用,考查函数的单调性问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若角α的终边经过点(1,-5),则tanα等于(  )
A.-5B.5C.-$\frac{1}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)是R上的奇函数,当x≥0时,f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),0≤x<1}\\{|x-3|,x≥1}\end{array}\right.$,则函数y=f(x)-$\frac{1}{2}$的所有零点之和是(  )
A.5+$\sqrt{2}$B.1-$\sqrt{2}$C.$\sqrt{2}$-1D.5-$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在如图的程序框图中,若输入的x值为2,则输出的y值为(  )
A.0B.$\frac{1}{2}$C.-$\frac{3}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在极坐标系中,点M(1,$\frac{π}{2}$),曲线C的方程为ρsin2θ=cosθ.以极点O为原点,以极轴为x轴正半轴建立直角坐标系.
(Ⅰ)求点M的直角坐标及曲线C的直角坐标方程;
(Ⅱ)斜率为-1的直线l过点M,且与曲线C交于A,B两点,求点M到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若正实数m,n满足mn=1,证明:$\frac{1}{{e}^{m-1}}$+$\frac{1}{{e}^{n-1}}$<2(m+n).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求点M(1,-1,2)到直线L:$\left\{\begin{array}{l}{x-y-z+1=0}\\{2x-y+z-2=0}\end{array}\right.$ 的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在下列命题中:
①若$\overrightarrow a$、$\overrightarrow b$共线,则表示$\overrightarrow a$、$\overrightarrow b$的有向线段所在的直线平行;
②若表示$\overrightarrow a$、$\overrightarrow b$的有向线段所在直线是异面直线,则$\overrightarrow a$、$\overrightarrow b$一定不共面;
③若$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$三向量两两共面,则$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$三向量一定也共面;
④已知三向量$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$不共面,则空间任意一个向量$\overrightarrow p$总可以唯一表示为$\overrightarrow p=x\overrightarrow a+y\overrightarrow b+z\overrightarrow c$,x,y,z∈R.其中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知实数x,y满足$\left\{\begin{array}{l}{x-2y+1≥0}\\{x-y-1≤0}\\{x+y+1≥0}\end{array}\right.$,则z=$\frac{3x+y+3}{x+1}$的取值范围是[2,3.5].

查看答案和解析>>

同步练习册答案