精英家教网 > 高中数学 > 题目详情

【题目】某汽车公司对最近6个月内的市场占有率进行了统计,结果如表;

月份代码

1

2

3

4

5

6

市场占有率

11

13

16

15

20

21

(1)可用线性回归模型拟合之间的关系吗?如果能,请求出关于的线性回归方程,如果不能,请说明理由;

(2)公司决定再采购两款车扩大市场, 两款车各100辆的资料如表:

车型

报废年限(年)

合计

成本

1

2

3

4

10

30

40

20

100

1000元/辆

15

40

35

10

100

800元/辆

平均每辆车每年可为公司带来收入元,不考虑采购成本之外的其他成本,假设每辆车的使用寿命部是整数年,用每辆车使用寿命的频率作为概率,以每辆车产生利润的平均数作为决策依据,应选择采购哪款车型?

参考数据: .

参考公式:相关系数

回归直线方程为,其中.

【答案】(1);(2)应选择款车型.

【解析】分析:(1)先算相关系数.,所以两变量之间具有较强的线性相关关系。再根据公式分别求得。(2)由表可知,款车有10辆利润为-500,有30辆利润为0,40辆利润为500,有20辆利润为1000,B款车有15辆利润为-30040辆利润为200,有35辆利润为700,有10辆利润为1200,分别算出两款车型的平均利润,选择平均利润高的。

详解:(1)

.

所以两变量之间具有较强的线性相关关系,

故可用线性回归模型拟合两变量之间的关系.

.

回归直线方程为.

(2)用频率估计概率, 款车有10辆利润为-500,有30辆利润为0,40辆利润为500,有20辆利润为1000,所以平均利润为:

(元).

款车有15辆利润为-300,40辆利润为200,有35辆利润为700,有10辆利润为1200所以平均利润为:

(元).

以每辆车产生平均利润为决策依据,故应选择款车型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知Sn为数列{an}的前n项和,且满足Sn﹣2an=n﹣4.
(1)证明{Sn﹣n+2}为等比数列;
(2)设数列{Sn}的前n项和Tn , 比较Tn与2n+2﹣5n的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知等腰梯形ABCD中,AD∥BC,BC=2AD=2AB=4,将△ABD沿BD折到△A′BD的位置,使平面A′BD⊥平面CBD.

(Ⅰ)求证:CD⊥A′B;
(Ⅱ)试在线段A′C上确定一点P,使得二面角P﹣BD﹣C的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的值域是,则实数的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,底面ABCD是平行四边形,∠ABC=45°,AD=AP=2, ,E为CD的中点,点F在线段PB上.
(Ⅰ)求证:AD⊥PC;
(Ⅱ)试确定点F的位置,使得直线EF与平面PDC所成的角和直线EF与平面ABCD所成的角相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.若直线l的极坐标方程为 ,曲线C的极坐标方程为:ρsin2θ=cosθ,将曲线C上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线C1
(Ⅰ)求曲线C1的直角坐标方程;
(Ⅱ)已知直线l与曲线C1交于A,B两点,点P(2,0),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列满足: ,且 ,其前n项和.

(1)求证:为等比数列;

(2)记为数列的前n项和.

(i)当时,求

(ii)当时,是否存在正整数,使得对于任意正整数,都有?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数,),以直角坐标系的原点为极点,以轴的正半轴为极轴建立坐标系,圆的极坐标方程为.

(1)求圆的直角坐标方程(化为标准方程)及曲线的普通方程;

(2)若圆与曲线的公共弦长为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)处的切线方程;

(2)当时,函数有两个极值点,求的取值范围;

(3)若在点处的切线与轴平行,且函数时,其图象上每一点处切线的倾斜角均为锐角,求的取值范围.

查看答案和解析>>

同步练习册答案