精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数,),以直角坐标系的原点为极点,以轴的正半轴为极轴建立坐标系,圆的极坐标方程为.

(1)求圆的直角坐标方程(化为标准方程)及曲线的普通方程;

(2)若圆与曲线的公共弦长为,求的值.

【答案】(1) 曲线的直角坐标方程为,曲线的普通方程为;(2) .

【解析】分析:(1)由极坐标与直角坐标的互化公式即可得圆的直角坐标方程;消去参数即可得曲线的普通方程;

(2)联立圆C与曲线,因为圆的直径为,且圆与曲线的公共弦长为,即公共弦直线经过圆的圆心,即可得到答案.

详解:(1)由,得

所以

故曲线的直角坐标方程为.

曲线的普通方程为

(2)联立,得

因为圆的直径为,且圆与曲线的公共弦长为

所以直线经过圆的圆心

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下表是某地一家超市在2018年一月份某一周内周2到周6的时间与每天获得的利润(单位:万元)的有关数据.

星期

星期2

星期3

星期4

星期5

星期6

利润

2

3

5

6

9

1)根据上表提供的数据,用最小二乘法求线性回归直线方程

2)估计星期日获得的利润为多少万元.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车公司对最近6个月内的市场占有率进行了统计,结果如表;

月份代码

1

2

3

4

5

6

市场占有率

11

13

16

15

20

21

(1)可用线性回归模型拟合之间的关系吗?如果能,请求出关于的线性回归方程,如果不能,请说明理由;

(2)公司决定再采购两款车扩大市场, 两款车各100辆的资料如表:

车型

报废年限(年)

合计

成本

1

2

3

4

10

30

40

20

100

1000元/辆

15

40

35

10

100

800元/辆

平均每辆车每年可为公司带来收入元,不考虑采购成本之外的其他成本,假设每辆车的使用寿命部是整数年,用每辆车使用寿命的频率作为概率,以每辆车产生利润的平均数作为决策依据,应选择采购哪款车型?

参考数据: .

参考公式:相关系数

回归直线方程为,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆轴的左右交点分别为,与轴正半轴的交点为.

(1)若直线过点并且与圆相切,求直线的方程;

(2)若点是圆上第一象限内的点,直线分别与轴交于点,点是线段的中点,直线,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三特长班的一次月考数学成绩的茎叶图和频率分布直方图1都受到不同程度的损坏,但可见部分如图2,据此解答如下问题:
(Ⅰ)求分数在[70,80)之间的频数,并计算频率分布直方图中[70,80)间的矩形的高;
(Ⅱ)若要从分数在[50,70)之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份在[50,60)之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为 ,(θ为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ= sinθ+cosθ,曲线C3的极坐标方程是θ= . (Ⅰ)求曲线C1的极坐标方程;
(Ⅱ)曲线C3与曲线C1交于点O,A,曲线C3与曲线C2曲线交于点O,B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知点,直线l与圆C:(x一1)2+(y一2)2=4相交于AB两点,且OAOB

(1)若直线OA的方程为y=一3x,求直线OB被圆C截得的弦长;

(2)若直线l过点(0,2),求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面,四边形是正方形,.

(Ⅰ)证明:平面平面

(Ⅱ)求直线与平面所成角的余弦值.

查看答案和解析>>

同步练习册答案