精英家教网 > 高中数学 > 题目详情

【题目】已知Sn为数列{an}的前n项和,且满足Sn﹣2an=n﹣4.
(1)证明{Sn﹣n+2}为等比数列;
(2)设数列{Sn}的前n项和Tn , 比较Tn与2n+2﹣5n的大小.

【答案】
(1)证明:注意到n=1时,S1﹣1+2=4,

n≥2时原式转化为:Sn=2(Sn﹣Sn1)=n﹣4,即Sn=2Sn1﹣n+4,

所以Sn﹣n+2=2[Sn1﹣(n﹣1)+2],

所以{Sn﹣n+2}为首项为4,公比为2等比数列


(2)解:由(1)知:Sn﹣n+2=2n+1,所以Sn=2n+1+n﹣2,

于是Tn=(22+23+…+2n+1)+(1+2+…+n)﹣2n

= =

所以 = =

因为n≥1,所以 ,当且仅当n=1时取等号


【解析】(1)根据数列的递推公式可得Sn﹣n+2=2[Sn1﹣(n﹣1)+2],即可证明,(2)利用分组求和求出Tn , 再利用作差法比较大小即可
【考点精析】掌握等比数列的通项公式(及其变式)是解答本题的根本,需要知道通项公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】保险公司统计的资料表明:居民住宅区到最近消防站的距离x(单位:千米)和火灾所造成的损失数额y(单位:千元)有如下的统计资料:

距消防站距离x(千米)

1.8

2.6

3.1

4.3

5.5

6.1

火灾损失费用y(千元)

17.8

19.6

27.5

31.3

36.0

43.2

如果统计资料表明yx有线性相关关系,试求:

(Ⅰ)求相关系数(精确到0.01);

(Ⅱ)求线性回归方程(精确到0.01);

(III)若发生火灾的某居民区与最近的消防站相距10.0千米,评估一下火灾的损失(精确到0.01).

参考数据:

参考公式:相关系数 回归方程 中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率为,椭圆上一点到左右两个焦点的距离之和是4.

(1)求椭圆的方程;

(2)已知过的直线与椭圆交于两点,且两点与左右顶点不重合,若,求四边形面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式:|2x﹣m|≤1的整数解有且仅有一个值为2.
(Ⅰ)求整数m的值;
(Ⅱ)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002,…,800进行编号.

(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;(下面摘取了第7行到第9行)

84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79

33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54

(2)抽取的100人的数学与地理的水平测试成绩如下表:

人 数

数 学

优 秀

良 好

及 格

优 秀

7

20

5

良 好

9

18

6

及 格

a

4

b

成绩分为优秀、良好、及格三个等级;横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有

①若在该样本中,数学成绩优秀率是,求 的值:

②在地理成绩及格的学生中,已知,求数学成绩优秀的人数比及格的人数少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列两个命题: 函数在[2,+∞)单调递增; 关于的不等式的解集为.若为真命题, 为假命题,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是某地一家超市在2018年一月份某一周内周2到周6的时间与每天获得的利润(单位:万元)的有关数据.

星期

星期2

星期3

星期4

星期5

星期6

利润

2

3

5

6

9

1)根据上表提供的数据,用最小二乘法求线性回归直线方程

2)估计星期日获得的利润为多少万元.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车公司对最近6个月内的市场占有率进行了统计,结果如表;

月份代码

1

2

3

4

5

6

市场占有率

11

13

16

15

20

21

(1)可用线性回归模型拟合之间的关系吗?如果能,请求出关于的线性回归方程,如果不能,请说明理由;

(2)公司决定再采购两款车扩大市场, 两款车各100辆的资料如表:

车型

报废年限(年)

合计

成本

1

2

3

4

10

30

40

20

100

1000元/辆

15

40

35

10

100

800元/辆

平均每辆车每年可为公司带来收入元,不考虑采购成本之外的其他成本,假设每辆车的使用寿命部是整数年,用每辆车使用寿命的频率作为概率,以每辆车产生利润的平均数作为决策依据,应选择采购哪款车型?

参考数据: .

参考公式:相关系数

回归直线方程为,其中.

查看答案和解析>>

同步练习册答案