1£®Ä³ÒôÀÖÅçȪÅçÉäµÄË®Öé³ÊÅ×ÎïÏßÐΣ¬ËüÔÚÿ·ÖÖÓÄÚËæÊ±¼ät£¨s£©µÄ±ä»¯¹æÂÉ´óÖ¿ÉÓÃy=-£¨1+4sin2$\frac{t¦Ð}{60}$£©x2+20£¨sin$\frac{t¦Ð}{60}$£©x£¨tΪʱ¼ä²ÎÊý£¬xµÄµ¥Î»Îªm£©À´ÃèÊö£¬ÆäÖеØÃæ¿É×÷ΪxÖáËùÔÚÆ½Ã棬ȪÑÛÎª×ø±êÔ­µã£¬´¹Ö±ÓÚµØÃæµÄÖ±ÏßΪyÖᣮ
£¨1£©ÊÔÇó´ËÅçȪÅçÉäµÄÔ²Ðη¶Î§°ë¾¶µÄ×î´óÖµ£»
£¨2£©Èô¼Æ»®ÔÚÒ»½¨ÖþÎïǰάÐÞÒ»¸ö¾ØÐλ¨Ì³²¢ÔÚ»¨Ì³ÄÚ×°Á½¸öÕâÑùµÄÅçȪ£¨ÈçͼËùʾ£©£¬ÈçºÎÉè¼Æ»¨Ì³µÄ³ß´çºÍÁ½¸öÅçË®Æ÷µÄλÖ㬲ÅÄÜʹ»¨Ì³µÄÃæ»ý×î´óÇÒÄÜÈ«²¿Å絽ˮ£¿

·ÖÎö £¨1£©Áîy=0£¬¿É½áºÏt¡Ê£¨0£¬60£©£¬¼´¿ÉÇó³öÅçȪÅçÉäµÄÔ²Ðη¶Î§µÄ°ë¾¶×î´óÖµ£»
£¨2£©»¨Ì³µÄ³¤¡¢¿í·Ö±ðΪxm£¬ym£¬¸ù¾ÝÒªÇ󣬾ØÐλ¨Ì³Ó¦ÔÚÅçË®ÇøÓòÄÚ£¬¶¥µãӦǡºÃλÓÚÅçË®ÇøÓòµÄ±ß½ç£¬ÎÊÌâת»¯ÎªÔÚx£¾0£¬y£¾0£¬$\frac{{x}^{2}}{4}+{y}^{2}=100$µÄÌõ¼þÏ£¬ÇóS=xyµÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©µ±y=0ʱ£¬$x=\frac{20sin\frac{t¦Ð}{60}}{1+4si{n}^{2}\frac{2t¦Ð}{60}}$=$\frac{20}{si{n}^{-1}\frac{t¦Ð}{60}+4sin\frac{t¦Ð}{60}}$£¬
Òòt¡Ê£¨0£¬60£©Ê±£¬$sin\frac{t¦Ð}{60}¡Ê£¨0£¬1£©$£¬¹Ê$si{n}^{-1}\frac{t¦Ð}{60}+4sin\frac{t¦Ð}{60}¡Ý4$£¬
´Ó¶øµ±$sin\frac{t¦Ð}{60}=\frac{1}{2}$£¬¼´µ±t=10»ò50ʱ£¬xÓÐ×î´óÖµ5£¬
ËùÒÔ´ËÅçȪÅçÉäµÄÔ²Ðη¶Î§µÄ°ë¾¶×î´óÖµÊÇ5m£»
£¨2£©É軨̳µÄ³¤¡¢¿í·Ö±ðΪxm£¬ym£¬¸ù¾ÝÒªÇó£¬
¾ØÐλ¨Ì³Ó¦ÔÚÅçË®ÇøÓòÄÚ£¬¶¥µãӦǡºÃλÓÚÅçË®ÇøÓòµÄ±ß½ç£¬
ÒÀÌâÒâµÃ£º$£¨\frac{x}{4}£©^{2}+£¨\frac{y}{2}£©^{2}=25$£¬£¨x£¾0£¬y£¾0£©
ÎÊÌâת»¯ÎªÔÚx£¾0£¬y£¾0£¬$\frac{{x}^{2}}{4}+{y}^{2}=100$µÄÌõ¼þÏ£¬ÇóS=xyµÄ×î´óÖµ£®
¡ßS=xy=2•$\frac{x}{2}$•y¡Ü$\frac{{x}^{2}}{4}+{y}^{2}$=100£¬
ÓÉ$\frac{x}{2}$=yºÍ$\frac{{x}^{2}}{4}+{y}^{2}$=100¼°x£¾0£¬y£¾0µÃ£º
x=$10\sqrt{2}$£¬y=$5\sqrt{2}$£¬
¡àSmax=100£¬
¹Êµ±»¨Ì³µÄ³¤Îª$10\sqrt{2}$m¡¢¿íΪ$5\sqrt{2}$m¡¢Á½ÅçË®Æ÷λÓÚ¾ØÐηֳɵÄÁ½¸öÕý·½ÐεÄÖÐÐÄʱ·ûºÏÒªÇó£®

µãÆÀ ±¾Ì⿼²éÈý½Çº¯ÊýÄ£Ð͵ÄÔËÓ㬿¼²é»ù±¾²»µÈʽ£¬¿¼²éѧÉúÀûÓÃÊýѧ֪ʶ½â¾öʵ¼ÊÎÊÌâµÄÄÜÁ¦£¬ÊôÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªÏß¶ÎBCΪбÏß¶ÎABÔÚÆ½Ãæ¦ÁÄÚµÄÉäÓ°£¬BD?¦Á£¬Èô¡ÏABD=60¡ã£¬¡ÏCBD=45¡ã£¬ÔòABºÍÆ½Ãæ¦ÁËù³ÉµÄ½ÇΪ£¨¡¡¡¡£©
A£®15¡ãB£®30¡ãC£®45¡ãD£®60¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®É躯Êýf£¨x£©=x2+lnx-ax£®
£¨1£©µ±a=0ʱ£¬Çóº¯Êýy=f£¨x£©µÄͼÏóÔڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©Èôº¯Êýy=f£¨x£©ÔÚ¶¨ÒåÓòÄÚΪÔöº¯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨¢ó£©ÊÇ·ñ´æÔÚʵÊýa£¬Ê¹g£¨x£©=x2-f£¨x£©£¬x¡Ê£¨0£¬e]µÄ×îСֵΪ3£¿Èô´æÔÚ£¬Çó³öaµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®É趨ÒåÔÚDÉϵĺ¯Êýy=h£¨x£©ÔÚµãP£¨x0£¬h£¨x0£©£©´¦µÄÇÐÏß·½³ÌΪl£ºy=g£¨x£©£¬µ±x¡Ùx0ʱ£¬Èô$\frac{h£¨x£©-g£¨x£©}{x-{x}_{0}}$£¾0ÔÚDÄÚºã³ÉÁ¢£¬Ôò³ÆPµãΪº¯Êýy=h£¨x£©µÄ¡°Àà¶Ô³ÆÖÐÐĵ㡱£¬Ôòº¯Êýf£¨x£©=$\frac{x^2}{{2{e^2}}}$+lnxµÄ¡°Àà¶Ô³ÆÖÐÐĵ㡱µÄ×ø±êÊÇ$£¨e£¬\frac{3}{2}£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=ln£¨x+1£©-$\frac{ax}{x+1}$£®
£¨1£©ÌÖÂÛº¯Êýf£¨x£©ÔÚÆä¶¨ÒåÓòÄڵĵ¥µ÷ÐÔ£»
£¨2£©Ö¤Ã÷£º£¨$\frac{2015}{2014}$£©2015£¾e£¨ÆäÖÐeΪ×ÔÈ»ÊýµÄµ×Êý£©£»
£¨3£©Ö¤Ã÷£º$\sum_{i=2}^{n}\frac{1}{i}$£¼lnn£¨n¡ÊN*£¬n¡Ý2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªa¡¢bÂú×ã|a|=1£¬|b|=$\sqrt{5}$£¬|a+b|=|a-b|£¬Ôò|2a-b|=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÔÚÕýÈý½ÇÐÎABCÖУ¬ÏÂÁи÷ʽÖгÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®|$\overrightarrow{AB}$|-|$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|B£®|$\overrightarrow{AB}$|-|$\overrightarrow{CA}$|=|$\overrightarrow{BC}$-$\overrightarrow{AB}$|C£®|$\overrightarrow{CA}$-$\overrightarrow{BC}$|=|$\overrightarrow{AC}$-$\overrightarrow{BA}$|D£®|$\overrightarrow{CA}$-$\overrightarrow{BC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®É躯Êýf£¨x£©ÊÇÁ¬Ðøº¯Êý£¬f£¨a£©=3£¬f£¨b£©=5£¬Ôò${¡Ò}_{a}^{b}$f¡ä£¨x£©dx=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èôtan£¨¦Á+45¡ã£©£¼0£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®sinx£¼0B£®cosx£¼0C£®sin2x£¼0D£®cos2x£¼0

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸