精英家教网 > 高中数学 > 题目详情
12.设函数f(x)=x2+lnx-ax.
(1)当a=0时,求函数y=f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)若函数y=f(x)在定义域内为增函数,求实数a的取值范围;
(Ⅲ)是否存在实数a,使g(x)=x2-f(x),x∈(0,e]的最小值为3?若存在,求出a的值;若不存在,请说明理由.

分析 (Ⅰ)把a=0代入函数解析式,求其导函数,得到f′(1)=3,即函数切线的斜率可求,再求出f(1)的值,由直线方程的点斜式得答案;
(Ⅱ)求出函数的导函数,由f′(x)≥0在(0,+∞)上恒成立中转化为a小于等于$2x+\frac{1}{x}$的最小值得答案;
(Ⅲ)求函数g(x)=x2-f(x)=ax-lnx的导函数,然后分a≤0、0<a$≤\frac{1}{e}$、a$>\frac{1}{e}$三种情况求解a的值得答案.

解答 解:(Ⅰ)当a=0时,f(x)=x2+lnx,${f}^{′}(x)=2x+\frac{1}{x}$,f′(1)=3,
∴切线的斜率为3,
又f(1)=1,∴切点为(1,1),
故所求的切线方程为:y-1=3(x-1),即3x-y-2=0;
(Ⅱ)${f}^{′}(x)=2x+\frac{1}{x}-a$,由题意知:f′(x)≥0在(0,+∞)上恒成立,
即:a$≤(2x+\frac{1}{x})_{min}$,
∵x>0,∴2x+$\frac{1}{x}≥2\sqrt{2}$,当且仅当x=$\frac{\sqrt{2}}{2}$时等号成立,
故$(2x+\frac{1}{x})_{min}=2\sqrt{2}$,
∴$a≤2\sqrt{2}$;
(Ⅲ)假设存在实数a,使g(x)=x2-f(x)=ax-lnx(x∈(0,e])的最小值为3.
${g}^{′}(x)=a-\frac{1}{x}=\frac{ax-1}{x}$.
①当a≤0时,g(x)在(0,e]上单调递减,此时g(x)min=g(e)=ae-1=3,
∴$a=\frac{4}{e}>0$不满足条件,舍去;
②当0<a$≤\frac{1}{e}$时,$\frac{1}{a}≥e$,g(x)在(0,e]上单调递减,此时g(x)min=g(e)=ae-1=3,
∴$a=\frac{4}{e}$不满足条件,舍去;
③当a$>\frac{1}{e}$时,0<$\frac{1}{a}<e$,g(x)在(0,$\frac{1}{a}$)上单调递减,在($\frac{1}{a}$,e]上单调递增,
此时$g(x)_{min}=g(\frac{1}{a})$=1+lna=3,∴a=e2,满足条件.
综上,存在实数a=e2,使得x∈(0,e]的最小值为3.

点评 本题考查了利用导数研究过曲线上某点处的切线方程,考查了利用导数研究函数的单调性,训练了利用导数求函数的最值,考查了数学转化、分类讨论等数学思想方法,是压轴题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.曲线$y=cos(x+\frac{π}{6})$在x=$\frac{π}{6}$处切线的斜率为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.曲线y=xex-1在点(1,1)处切线的斜率等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知四棱锥P-ABCD的底面是菱形,PB=PD,E为PA的中点.
(1)求证:PC∥平面BDE;
(2)求证:平面PAC⊥平面BDE;
(3)若∠DAB=60°,BP=BD=PC,求BP与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx-$\frac{a}{x}$,其中a∈R.
(1)当a=2时,求函数f(x)的图象在点(1,f(1))处的切线方程;
(2)如果对于任意x∈(1,+∞),都有f(x)>-x-2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\left\{\begin{array}{l}{({x}^{2}-2ax){e}^{x},}&{x>0}\\{bx,}&{x≤0}\end{array}\right.$,g(x)=clnx+b,且x=$\sqrt{2}$是函数y=f(x)的极值点,直线l是函数y=f(x)的图象在点(2,f(2))处的切线.
(1)求实数a的值和直线l的方程.
(2)若直线l与函数y=g(x)的图象相切于点P(x0,y0),x0∈[e-1,e],求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=(ax2-x)lnx-$\frac{1}{2}$ax2+bx(a∈R).
(1)当a=0时,曲线y=f(x)在(e,f(e))处的切线斜率为-1(e=2.718…),求函数f(x)的极值;
(2)当b=1时,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某音乐喷泉喷射的水珠呈抛物线形,它在每分钟内随时间t(s)的变化规律大致可用y=-(1+4sin2$\frac{tπ}{60}$)x2+20(sin$\frac{tπ}{60}$)x(t为时间参数,x的单位为m)来描述,其中地面可作为x轴所在平面,泉眼为坐标原点,垂直于地面的直线为y轴.
(1)试求此喷泉喷射的圆形范围半径的最大值;
(2)若计划在一建筑物前维修一个矩形花坛并在花坛内装两个这样的喷泉(如图所示),如何设计花坛的尺寸和两个喷水器的位置,才能使花坛的面积最大且能全部喷到水?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若sin($\frac{π}{6}$+a)=$\frac{1}{3}$,则cos($\frac{π}{3}$-a)+cos($\frac{2π}{3}$+a)-sin($\frac{5π}{6}$-a)=-$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案