精英家教网 > 高中数学 > 题目详情
(2013•资阳二模)在锐角三角形ABC中,a、b、c分别是角A、B、C的对边,且
3
a-2csinA=0.
(Ⅰ)求角C的大小;
(Ⅱ)若c=2,求a+b的最大值.
分析:(Ⅰ)利用正弦定理化简已知的等式,根据sinA不为0求出sinC的值,由三角形为锐角三角形,利用特殊角的三角函数值即可求出C的度数;
(Ⅱ)由c与cosC的值,利用余弦定理列出关系式,再利用完全平方公式变形,利用基本不等式即可求出a+b的最大值.
解答:解:(Ⅰ)由
3
a-2csinA=0,及正弦定理,得
3
sinA-2sinCsinA=0,
∵sinA≠0,
∴sinC=
3
2

∵△ABC是锐角三角形,
∴C=
π
3

(Ⅱ)∵c=2,C=
π
3
,∴由余弦定理得:a2+b2-2abcos
π
3
=4,即a2+b2-ab=4,
∴(a+b)2=4+3ab≤4+3•(
a+b
2
2,即(a+b)2≤16,
∴a+b≤4,当且仅当a=b=2取“=”,
则a+b的最大值是4.
点评:此题考查了正弦、余弦定理,基本不等式的运用,熟练掌握正弦、余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•资阳二模)某部门对当地城乡居民进行了主题为“你幸福吗?”的幸福指数问卷调査,根据每份调查表得到每个调查对象的幸福指数评分值(百分制).现从收到的调查表中随机抽取20份进行统计,得到右图所示的频率分布表:
幸福指数评分值 频数 频率
[50,60] 1
(60,70] 6
(70,80]
(80,90] 3
(90,100] 2
(Ⅰ)请完成题目中的频率分布表,并补全题目中的频率分布直方图;
(Ⅱ)该部门将邀请被问卷调查的部分居民参加“幸福愿景”的座谈会.在题中抽样统计的这20人中,已知幸福指数评分值在区间(80,100]的5人中有2人被邀请参加座谈,求其中幸福指数评分值在区间(80,90]的仅有1人被邀请的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•资阳二模)如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,D、E分别为A1B1、AA1的中点,点F在棱AB上,且AF=
14
AB

(Ⅰ)求证:EF∥平面BDC1
(Ⅱ)在棱AC上是否存在一个点G,使得平面EFG将三棱柱分割成的两部分体积之比为1:15,若存在,指出点G的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•资阳二模)双曲线y2-4x2=64上一点P到它的一个焦点的距离等于1,则P到它的另一个焦点的距离等于为
17
17

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•资阳二模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过(1,1)与(
6
2
3
2
)两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过原点的直线l与椭圆C交于A、B两点,椭圆C上一点M满足|MA|=|MB|.求证:
1
|OA|2
+
1
|OB|2
+
2
|OM|2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•资阳二模)已知全集U={1,2,3,4,5},A={1,2,3},B={3,5},则(?UA)∪B=(  )

查看答案和解析>>

同步练习册答案