精英家教网 > 高中数学 > 题目详情
1.已知(2x+1)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则 a0=1.

分析 直接在二项式两端取x=0求得a0

解答 解:由(2x+1)5=a0+a1x+a2x2+a3x3+a4x4+a5x5
取x=0,得${a}_{0}=(2×0+1)^{5}=1$.
故答案为:1.

点评 本题考查利用代入法求二项展开式中某一项的系数,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知$θ∈(0,\frac{π}{2})$,且$sinθ=\frac{4}{5}$,求$\frac{{{{sin}^2}θ+sin2θ}}{{{{cos}^2}θ+cos2θ}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(  )
A.y=log2$\frac{2-x}{2+x}$B.y=cos2xC.y=$\frac{{2}^{x}-{2}^{-x}}{2}$D.y=log2|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满an•an+1=3nn=1,2,3…,且a1=1.
(1)求证:当n≥2时,总有$\frac{{a}_{n+1}}{{a}_{n-1}}$=3;
(2)数列{bn}满足$\left\{\begin{array}{l}{lo{g}_{3}{a}_{n},}&{n为奇数}\\{\frac{2}{{a}_{n}},}&{n为偶数}\end{array}\right.$,bn=求{bn}的前2n项和S2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$|{\overrightarrow a}|=3$,$|{\overrightarrow b}|=4$,且$\overrightarrow a$与$\overrightarrow b$不共线,若$\overrightarrow a+k\overrightarrow b$与$\overrightarrow a-k\overrightarrow b$垂直时,k的值为(  )
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.±$\frac{3}{4}$D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=2arccos$\sqrt{x-1}$的值域是[0,π].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a为如图所示的算法框图中输出的结果,则二项式${(x+\frac{a}{x^2})^9}$的展开式中的常数项为(  )
A.84B.-84C.672D.-672

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=x2+1(x≤-1)的反函数为$y=-\sqrt{x-1}$(x≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.向边长为2米的正方形木框ABCD内随机投掷一粒绿豆,记绿豆落在P点;则P点到A点的距离大于1米,同时∠DPC∈[0,$\frac{π}{2}$]的概率为1-$\frac{3π}{16}$.

查看答案和解析>>

同步练习册答案