精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A,B,C所对的边长分别是a,b,c.
(1)若c=2,C=60°,且△ABC的面积为2
3
,求△ABC的周长;
(2)若sinC+sin(B-A)=sin2A,试判断△ABC的形状.
分析:(1)利用三角形面积公式列出关系式,将sinC的值代入求出ab的值,再利用余弦定理列出关系式,将c与cosC的值代入求出a+b的值,即可确定出周长;
(2)将sinC=sin(A+B)代入已知等式,利用和差化积公式变形,根据cosA=0与cosA≠0,即可确定出三角形形状.
解答:解:(1)∵C=60°,S△ABC=
1
2
absinC=2
3

∴ab=8,
∵c=2,cosC=
1
2

∴由余弦定理得:c2=a2+b2-2abcosC=(a+b)2-3ab,
即4=(a+b)2-24,
解得:a+b=2
7

则△ABC周长为2
7
+2;
(2)将sinC=sin(A+B)代入已知等式得:sin(A+B)+sin(B-A)=sin2A,
整理得:2sinBcosA=2sinAcosA,
当cosA=0,即A为直角时,满足题意,此时△ABC为直角三角形;
当cosA≠0时,得到sinA=sinB,即A=B,此时△ABC为等腰三角形,
则△ABC为等腰三角形或直角三角形.
点评:此题考查了正弦、余弦定理,和差化积公式,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对边长分别为a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,则b=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,且a,b是方程x2-2
3
x+2=0的两根,2cos(A+B)=1,则△ABC的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c.已知A=45°,a=6,b=3
2
,则B的大小为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c,已知B=60°,不等式x2-4x+1<0的解集为{x|a<x<c},则b=
13
13

查看答案和解析>>

同步练习册答案