精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1+ax2x+b
(a≠0)
是奇函数,并且函数f(x)的图象经过点(1,3)
(1)求实数a,b的值;
(2)当x>0时,求出函数f(x)的递增区间,并用定义进行证明;
(3)求函数f(x)当x>0时的值域.
分析:(1)由f(-x)+f(x)=0可求得b=0;又f(x)的图象经过点(1,3),从而可求得a;
(2)当x>0时,f(x)=2x+
1
x
在[
2
2
,+∞)上单调递增,利用单调性的定义证明即可;
(3)可利用导数判断f(x)=2x+
1
x
在[
2
2
,+∞)上单调递增,在(0,
2
2
]上单调递减,从而可确定函数f(x)当x>0时的值域.
解答:解:(1)∵f(x)=
1+ax2
x+b
(a≠0)
是奇函数,
∴f(-x)+f(x)=
1+a•(-x)2
-x+b
+
1+ax2
x+b
=(1+ax2)•
2b
(x+b)(-x+b)
=0,
∴b=0;
∴f(x)=
1+ax2
x
(a≠0)
,又f(x)的图象经过点(1,3),
1+a
1
=3,
∴a=2;
∴f(x)=2x+
1
x

(2)当x>0时,f(x)=2x+
1
x
在[
2
2
,+∞)上单调递增.
证明:令
2
2
≤x1<x2
则f(x2)-f(x1)=2(x2-x1)+(
1
x2
-
1
x1
)=(x2-x1)(2-
1
x1x2
),
2
2
≤x1<x2
∴0<
1
x1x2
<2,于是2-
1
x1x2
>0,
∴(x2-x1)(2-
1
x1x2
)>0,
∴f(x2)>f(x1).
∴当x>0时,f(x)=2x+
1
x
在[
2
2
,+∞)上单调递增.
(3)∵f(x)=2x+
1
x
(x>0),
∴f′(x)=2-
1
x2
,由f′(x)≥0可得x≥
2
2
,由f′(x)<0可得0<x<
2
2

∴f(x)=2x+
1
x
在[
2
2
,+∞)上单调递增,在(0,
2
2
]上单调递减.
∴f(x)=2x+
1
x
在x=
2
2
处取到最小值2
2

∴当x>0时f(x)=2x+
1
x
的值域为:[2
2
,+∞).
点评:本题考查函数奇偶性与单调性的综合,难点在于函数单调增区间的确定(导数法先判断,再用定义证明),着重考查函数奇偶性与单调性的性质及其应用,综合性强,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案