精英家教网 > 高中数学 > 题目详情
(2013•东城区一模)已知F1(-c,0),F2(c,0)分别是双曲线C1
x2
a2
-
y2
b2
=1
(a>0,b>0)的两个焦点,双曲线C1和圆C2:x2+y2=c2的一个交点为P,且2∠PF1F2=∠PF2F1,那么双曲线C1的离心率为(  )
分析:如图所示,利用圆的性质可得F1PF2=90°,再利用2∠PF1F2=∠PF2F1,得到∠PF1F2=30°.利用直角三角形的边角关系即可得到|PF2|=c,|PF1|=
3
c
.再利用双曲线的定义及离心率的计算公式即可得出.
解答:解:如图所示,
由题意可得F1PF2=90°
又2∠PF1F2=∠PF2F1,∴∠PF1F2=30°
∴|PF2|=c,|PF1|=
3
c

由双曲线的定义可得:|PF1|-|PF2|=2a,
3
c-c=2a

解得
c
a
=
2
3
-1
=
3
+1

故选D.
点评:熟练掌握圆的性质、直角三角形的边角关系、双曲线的定义、离心率的计算公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•东城区一模)设A是由n个有序实数构成的一个数组,记作:A=(a1,a2,…,ai,…,an).其中ai(i=1,2,…,n)称为数组A的“元”,S称为A的下标.如果数组S中的每个“元”都是来自 数组A中不同下标的“元”,则称A=(a1,a2,…,an)为B=(b1,b2,…bn)的子数组.定义两个数组A=(a1,a2,…,an),B=(b1,b2,…,bn)的关系数为C(A,B)=a1b1+a2b2+…+anbn
(Ⅰ)若A=(-
1
2
1
2
)
,B=(-1,1,2,3),设S是B的含有两个“元”的子数组,求C(A,S)的最大值;
(Ⅱ)若A=(
3
3
3
3
3
3
)
,B=(0,a,b,c),且a2+b2+c2=1,S为B的含有三个“元”的子数组,求C(A,S)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区一模)某游戏规则如下:随机地往半径为1的圆内投掷飞标,若飞标到圆心的距离大于
1
2
,则成绩为及格;若飞标到圆心的距离小于
1
4
,则成绩为优秀;若飞标到圆心的距离大于
1
4
且小于
1
2
,则成绩为良好,那么在所有投掷到圆内的飞标中得到成绩为良好的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区一模)函数f(x)=sin(x-
π
3
)
的图象为C,有如下结论:
①图象C关于直线x=
6
对称;
②图象C关于点(
3
,0)
对称;
③函数f(x)在区间[
π
3
6
]
内是增函数,
其中正确的结论序号是
①②③
①②③
.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区一模)已知全集U={1,2,3,4},集合A={1,2},那么集合?UA为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区一模)数列{an}的各项排成如图所示的三角形形状,其中每一行比上一行增加两项,若an=an(a≠0),则位于第10行的第8列的项等于
a89
a89
,a2013在图中位于
第45行的第77列
第45行的第77列
.(填第几行的第几列)

查看答案和解析>>

同步练习册答案