精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
ax3+x2-x,a∈R

(1)若函数 在x=1处的切线l与直线y=4x+3平行,求实数a的值;
(2)若函数f(x)在(2,+∞)上存在单调递增区间,求实数a的取值范围;
(3)在(1)的条件下,设函数g(x)=|f(x)-x2+x-1|+
1
3
x
,若方程g(x)-m=0在区间[-2,2]上有两个不相等的实数根,求实数m的取值范围.
分析:(1)求导函数,利用导数的几何意义,结合函数在x=1处的切线l与直线y=4x+3平行,可实数a的值;
(2)求导函数f′(x)=ax2+2x-1,函数f(x)在(2,+∞)上存在单调递增区间,只需f′(x)=ax2+2x-1>0在(2,+∞)上有解即可;
(3)函数g(x)=|f(x)-x2+x-1|+
1
3
x
,若方程g(x)-m=0在区间[-2,2]上有两个不相等的实数根,只需要g(x)的图象y=m有两个不同的交点.
解答:解:(1)求导函数f′(x)=ax2+2x-1
∵函数在x=1处的切线l与直线y=4x+3平行,
∴f′(1)=a+1=4
∴a=3
(2)求导函数f′(x)=ax2+2x-1,函数f(x)在(2,+∞)上存在单调递增区间,只需f′(x)=ax2+2x-1>0在(2,+∞)上有解即可
f′(x)=ax2+2x-1>0在(2,+∞)上有解,即a>
1
x2
-
2
x
在(2,+∞)上有解
1
x2
-
2
x
=(
1
x
-1)
2
-1,
1
x
∈(0,
1
2
)

1
x2
-
2
x
>-
3
4

a>-
3
4

∴实数a的取值范围是(-
3
4
,+∞)

(3)函数g(x)=|f(x)-x2+x-1|+
1
3
x
,若方程g(x)-m=0在区间[-2,2]上有两个不相等的实数根,只需要g(x)的图象y=m有两个不同的交点
当x≥1时,g(x)=x3-1+
1
3
x
,g′(x)=3x2+
1
3
>0,函数g(x)单调递增
当x<1时,g(x)=-x3+1+
1
3
x
,g′(x)=-3x2+
1
3
=-3(x+
1
3
)(x-
1
3
)

令g′(x)>0,可得-
1
3
<x
1
3
,令g′(x)<0,可得x<-
1
3
,或x
1
3

∴函数在(-2,-
1
3
)
上单调减,(-
1
3
1
3
)上单调增,(
1
3
,1)
上单调减,(1,2)上单调增
∴当x=-
1
3
时,g(x)取得极小值
25
27
.当x=
1
3
时,g(x)取得极大值
29
27
.g(-2)=
25
3
,g(2)=
23
3

1
3
<m<
25
27
29
27
<m<
23
3
时,g(x)的图象y=m有两个不同的交点,方程g(x)-m=0在区间[-2,2]上有两个不相等的实数根
∴实数m的取值范围为(
1
3
25
27
)∪ (
29
27
23
3
)
点评:本题重点考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查利用导数研究函数的图象,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案