精英家教网 > 高中数学 > 题目详情
5.如图,已知点C是以AB为直径的圆O上一点,CG垂直于AB,垂足为G,过B点做圆O的切线,交直线AC于点D,点E是CG的中点,连接并延长AE交BD于点F,求证:
(1)AE•DF=CE•AF;
(2)CF是圆O的切线.

分析 (1)证明△ACE∽△ADF,即可证明AE•DF=CE•AF;
(2)证明∠FCB+∠OCB=90°,即可证明CF是圆O的切线.

解答 证明:(1)由题知DB⊥AB,CG⊥AB,∴CG∥BD,△ACE∽△ADF,
有$\frac{AE}{AF}=\frac{CE}{DF}$,即AE•DF=CE•AF…(5分)
(2)连接OC和CB,由(1)知$\frac{AE}{AF}=\frac{CE}{DF}=\frac{EG}{FB}$,又CE=EG,所以DF=FB,…(7分)
在RT△DCB中,F为BD中点,FC=FB,
所以∠FCB=∠FBC,
又∠OCB=∠OBC,∠FBC+∠OBC=90°,所以∠FCB+∠OCB=90°,
即CF是圆O的切线…(10分)

点评 本题考查三角形相似的判定,考查圆的切线的证明,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知数列{an}的前n项和为Sn,且a1=1,an+1=Sn+2,则满足$\frac{S_n}{{{S_{2n}}}}<\frac{1}{10}$的n的最小值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.${∫}_{0}^{1}$(x-x2)dx=$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.有下面四个命题:
①函数f(x)=$\frac{1}{x}$单调递减区间是(-∞,0)∪(0,+∞);
②函数f(x)=$\left\{{\begin{array}{l}{\frac{4}{7}x+\frac{7}{4}}&{x≤0}\\{-{x^2}+x+2}&{x>0}\end{array}}$的最大值是$\frac{9}{4}$;
③若函数ax2+ax+2>0恒成立,则实数a的取值范围是0<a<8;
④设数集M=$\{x|m≤x≤m+\frac{3}{4}\},N=\{x|n-\frac{1}{3}≤x≤n\}$,且M,N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么M∩N的“长度”最小值是$\frac{1}{12}$.其中正确命题的序号是②④(写出你认为正确命题的所有序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:?x∈(-∞,0),2x>3x,命题q:?x∈(0,1),lgx>0,则下列命题为真命题的是(  )
A.p∧qB.p∧(¬q)C.(¬p)∧qD.¬p∨q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$0<x<\frac{π}{2},f(x)=\frac{1}{sinx}+\frac{sinx+9}{1-sinx}$的最小值为2$\sqrt{10}$+10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆C:x2+y2+kx+2y+k2=0和定点P(1,-1),若过点P作圆的切线有两条,则k的取值范围是(  )
A.(-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$)B.(-∞,-1)∪(0,+∞)C.(-$\frac{2\sqrt{3}}{3}$,0)D.(-$\frac{2\sqrt{3}}{3}$,-1)∪({0,$\frac{2\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.连续抛掷两次骰子,得到的点数分别为m,n,记向量$\overrightarrow{a}$=(m,n),$\overrightarrow{b}$=(1,-1)的夹角为θ,则θ∈(0,$\frac{π}{2}$)的概率是(  )
A.$\frac{5}{12}$B.$\frac{1}{2}$C.$\frac{7}{12}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|ax2-4x+4=0,a∈R}至多有一个真子集,求a的取值集合.

查看答案和解析>>

同步练习册答案