分析 化简函数f(x)=$\frac{1}{sinx}$+$\frac{sinx+9}{1-sinx}$=…=$\frac{1-sinx}{sinx}$+$\frac{10sinx}{1-sinx}$+10,利用基本不等式求出f(x)的最小值.
解答 解:当0<x<$\frac{π}{2}$时,0<sinx<1;
所以f(x)=$\frac{1}{sinx}$+$\frac{sinx+9}{1-sinx}$
=$\frac{1}{sinx}$+$\frac{sinx-1+10}{1-sinx}$
=$\frac{1}{sinx}$+$\frac{10}{1-sinx}$-1
=($\frac{1}{sinx}$+$\frac{10}{1-sinx}$)(1-sinx+sinx)-1
=$\frac{1-sinx+sinx}{sinx}$+$\frac{10(1-sinx+sinx)}{1-sinx}$-1
=$\frac{1-sinx}{sinx}$+$\frac{10sinx}{1-sinx}$+10
≥2$\sqrt{\frac{(1-sinx)•10sinx}{sinx(1-sinx)}}$+10
=2$\sqrt{10}$+10,
当且仅当$\frac{1-sinx}{sinx}$=$\frac{10sinx}{1-sinx}$,
即sinx=$\frac{\sqrt{11}}{11}$时取“=”;
所以函数f(x)的最小值为2$\sqrt{10}$+10.
故答案为:2$\sqrt{10}$+10.
点评 本题考查了三角函数的化简与基本不等式的应用问题,是综合性题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,1,2} | B. | (-1,2] | C. | {1,2} | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,3] | B. | (1,3) | C. | [-3,-1] | D. | (-3,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com