精英家教网 > 高中数学 > 题目详情
2.已知集合M={x|x2=1},集合N={x|ax=1},若N?M,那么a的值是(  )
A.1B.-1C.1或-1D.0,1或-1

分析 由已知得$\frac{1}{a}=-1$,或$\frac{1}{a}=1$,或$\frac{1}{a}$没有意义,由此能求出结果.

解答 解:∵集合M={x|x2=1}={-1,1},
集合N={x|ax=1}={$\frac{1}{a}$},N?M,
∴$\frac{1}{a}=-1$,或$\frac{1}{a}=1$,或$\frac{1}{a}$没有意义,
解得a=-1,或a=1,或a=0.
故选:D.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意子集的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)是定义在R上的奇函数,且x>0时,f(x)=log2(x+1)+3x,则满足f(x)>-4的实数x的取值范围是(  )
A.(-2,2)B.(-1,1)C.(-1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.有下面四个命题:
①函数f(x)=$\frac{1}{x}$单调递减区间是(-∞,0)∪(0,+∞);
②函数f(x)=$\left\{{\begin{array}{l}{\frac{4}{7}x+\frac{7}{4}}&{x≤0}\\{-{x^2}+x+2}&{x>0}\end{array}}$的最大值是$\frac{9}{4}$;
③若函数ax2+ax+2>0恒成立,则实数a的取值范围是0<a<8;
④设数集M=$\{x|m≤x≤m+\frac{3}{4}\},N=\{x|n-\frac{1}{3}≤x≤n\}$,且M,N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么M∩N的“长度”最小值是$\frac{1}{12}$.其中正确命题的序号是②④(写出你认为正确命题的所有序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$0<x<\frac{π}{2},f(x)=\frac{1}{sinx}+\frac{sinx+9}{1-sinx}$的最小值为2$\sqrt{10}$+10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆C:x2+y2+kx+2y+k2=0和定点P(1,-1),若过点P作圆的切线有两条,则k的取值范围是(  )
A.(-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$)B.(-∞,-1)∪(0,+∞)C.(-$\frac{2\sqrt{3}}{3}$,0)D.(-$\frac{2\sqrt{3}}{3}$,-1)∪({0,$\frac{2\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}的前n项和为Sn,已知a1=2,Sn=an+1-2(n+1)(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn+1-bn=4(n∈N*),且b1,b2,b5成等比数列,数列$\{\frac{b_n}{{{a_n}+2}}\}$的前n项和为Tn,求证:${T_n}=3-\frac{2n+3}{2^n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.连续抛掷两次骰子,得到的点数分别为m,n,记向量$\overrightarrow{a}$=(m,n),$\overrightarrow{b}$=(1,-1)的夹角为θ,则θ∈(0,$\frac{π}{2}$)的概率是(  )
A.$\frac{5}{12}$B.$\frac{1}{2}$C.$\frac{7}{12}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知tanα,tanβ是方程2x2+3x-7=0的两个实根.
(1)求tan(α+β)的值;
(2)求$\frac{cos(α-β)}{sin(α+β)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow a=(1,3),\overrightarrow b=(1,y),若\overrightarrow a∥\overrightarrow{b,}$则y的值为(  )
A.3B.$-\frac{1}{3}$C.-3D.2

查看答案和解析>>

同步练习册答案