精英家教网 > 高中数学 > 题目详情
1.已知集合A={x|-2<x≤2,x∈Z},B={x|x2-4x-5<0},则A∩B=(  )
A.{0,1,2}B.(-1,2]C.{1,2}D.(1,2)

分析 化简集合A、B,求出A∩B即可.

解答 解:集合A={x|-2<x≤2,x∈Z}={-1,0,1,2},
B={x|x2-4x-5<0}={x|-1<x<5},
所以A∩B={0,1,2}.
故选:A.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,a1=3,且2Sn=an+1+2n.
(1)求a2
(2)求数列{an}的通项公式an
(3)令bn=(2n-1)(an-1),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)是定义在R上的奇函数,且x>0时,f(x)=log2(x+1)+3x,则满足f(x)>-4的实数x的取值范围是(  )
A.(-2,2)B.(-1,1)C.(-1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若cos(75°-a)=$\frac{1}{3}$,则cos(30°+2a)=$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.${∫}_{0}^{1}$(x-x2)dx=$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.证明函数f(x)=-2x+1在R上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.有下面四个命题:
①函数f(x)=$\frac{1}{x}$单调递减区间是(-∞,0)∪(0,+∞);
②函数f(x)=$\left\{{\begin{array}{l}{\frac{4}{7}x+\frac{7}{4}}&{x≤0}\\{-{x^2}+x+2}&{x>0}\end{array}}$的最大值是$\frac{9}{4}$;
③若函数ax2+ax+2>0恒成立,则实数a的取值范围是0<a<8;
④设数集M=$\{x|m≤x≤m+\frac{3}{4}\},N=\{x|n-\frac{1}{3}≤x≤n\}$,且M,N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么M∩N的“长度”最小值是$\frac{1}{12}$.其中正确命题的序号是②④(写出你认为正确命题的所有序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$0<x<\frac{π}{2},f(x)=\frac{1}{sinx}+\frac{sinx+9}{1-sinx}$的最小值为2$\sqrt{10}$+10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知tanα,tanβ是方程2x2+3x-7=0的两个实根.
(1)求tan(α+β)的值;
(2)求$\frac{cos(α-β)}{sin(α+β)}$的值.

查看答案和解析>>

同步练习册答案