分析 (1)记该考生至少抽到1道解答题为事件A,利用对立事件能求出该考生至少抽到1道解答题的概率.
(2)X所有的可能取值为0,1,2,3.分别求出相应的概率,由此能求出X的分布列和E(X).
解答 (本小题满分10分)
解 (1)记该考生至少抽到1道解答题为事件A,
则P(A)=1-P($\overline{A}$)=1-$\frac{{C}_{4}^{3}}{{C}_{6}^{3}}$=$\frac{4}{5}$.…(4分)
(2)X所有的可能取值为0,1,2,3.
P(X=0)=(1-$\frac{2}{3}$)2•(1-$\frac{1}{2}$)=$\frac{1}{18}$,
P(X=1)=${C}_{2}^{1}•\frac{2}{3}•(1-\frac{2}{3})•(1-\frac{1}{2})+(1-\frac{2}{3})^{2}•\frac{1}{2}$=$\frac{5}{18}$,
P(X=2)=${C}_{2}^{1}•\frac{2}{3}•(1-\frac{2}{3})•\frac{1}{2}+(\frac{2}{3})^{2}•(1-\frac{1}{2})$=$\frac{4}{9}$,
P(X=3)=($\frac{2}{3}$)2$•\frac{1}{2}$=$\frac{2}{9}$.
所以X的分布列为:
| X | 0 | 1 | 2 | 3 |
| P | $\frac{1}{18}$ | $\frac{5}{18}$ | $\frac{4}{9}$ | $\frac{2}{9}$ |
点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com