精英家教网 > 高中数学 > 题目详情
(2012•广州一模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
6
3
,短轴一个端点到右焦点的距离为3.
(1)求椭圆C的方程;
(2)直线y=x与椭圆C在第一象限相交于点A,试探究在椭圆C上存在多少个点B,使△OAB为等腰三角形.(简要说明理由,不必求出这些点的坐标)
分析:(1)根据椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
6
3
,短轴一个端点到右焦点的距离为3,确定a,c,利用b2=a2-c2,求出b2,从而可以求椭圆C的方程;
(2)直线方程与椭圆方程联立,确定A的坐标,进而分类讨论,探究椭圆C上存在的点B,使△OAB为等腰三角形.
解答:解:(1)由于短轴一个端点到右焦点的距离为3,则a=3…(1分),
因为e=
c
a
=
6
3
…(2分),所以c=
6
…(3分),
所以b2=a2-c2=9-6=3…(4分),
所以椭圆C的方程为:
x2
9
+
y2
3
=1
…(5分)
(2)直线方程与椭圆方程联立
x2
9
+
y2
3
=1
y=x
(x>0),解得x=y=
3
2
,即A(
3
2
3
2
)
…(6分)
以O为顶点的等腰三角形△OAB有两个,此时B为A关于x轴或y轴的对称点…(8分),
以A为顶点的等腰三角形△OAB有两个(9分),此时B为以A为圆心、AO为半径的圆弧与椭圆C的交点…(10分),
以AO为底边的等腰三角形△OAB有两个(11分),此时B为AO的垂直平分线与椭圆C的交点…(12分).
因为直线y=x倾斜角为
π
4
,所以以上等腰△OAB不可能是等边三角形…(13分),
即以上6个三角形互不相同,存在6个点B,使△OAB为等腰三角形…(14分).
点评:本题考查椭圆的标准方程,考查学生的探究能力,考查分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•广州一模)如图所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以a表示.已知甲、乙两个小组的数学成绩的平均分相同.
(1)求a的值;
(2)求乙组四名同学数学成绩的方差;
(3)分别从甲、乙两组同学中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X,求随机变量X的分布列和均值(数学期望).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知函数f(x)=-x3+ax2+b(a,b∈R).
(1)求函数f(x)的单调递增区间;
(2)若对任意a∈[3,4],函数f(x)在R上都有三个零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)设函数f(x)=ex(e为自然对数的底数),gn(x)=1+x+
x2
2!
+
x3
3!
+…+
xn
n!
(n∈N*).
(1)证明:f(x)≥g1(x);
(2)当x>0时,比较f(x)与gn(x)的大小,并说明理由;
(3)证明:1+(
2
2
)1+(
2
3
)2+(
2
4
)3+…+(
2
n+1
)ngn(1)<e
(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知
e1
=(
3
,-1)
e2
=(
1
2
3
2
)
,若
a
=
e1
+(t2-3)•
e2
b
=-k•
e1
+t•
e2
,若
a
b
,则实数k和t满足的一个关系式是
t3-3t-4k=0
t3-3t-4k=0
k+t2
t
的最小值为
-
7
4
-
7
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知平面向量
a
=(1,3)
b
=(-3,x)
,且
a
b
,则
a
b
=(  )

查看答案和解析>>

同步练习册答案